期刊文献+

基于飞行时间信息与稀疏正则化的PET图像重建 被引量:3

The PET Image Reconstruction Based on TOF and Sparse Regularization
下载PDF
导出
摘要 正电子发射型计算机断层成像(PET)作为一种重要的临床影像技术,其图像重建技术非常重要.本文将γ光子飞行时间信息(TOF)加入到系统响应矩阵并提出基于TOF的图像重建算法.基于压缩感知原理,利用全变差和小波变换对图像进行稀疏化,以它们为正则项构建目标函数;并运用惩罚函数的方法将目标函数求解分解为二次优化和稀疏约束2个子问题,运用交替求解的方法逐一求解,降低了求解的复杂性.采用蒙特卡罗对Derenzo模型进行仿真重建并比较不同算法的成像效果,结果表明,加入TOF信息和利用稀疏约束能够更好地拟制噪声,图像重建效果优于传统算法.文中进一步研究了系统时间分辨率和时间采样间隔对图像重建的影响,结果表明,时间分辨率越高、时间采集间隔越短,重建效果越好. Positron emission tomography (PET) is an important clinical imaging technology, the image recon-struction of it is important. In this paper the time of flight (TOF) information ofγ photon was added to the system response matrix. According to the compressed sensing theory, the signal was sparsified with the total variation and wavelets transform, and they were used as regularization to construct the objective function. Using the pen-alty function method, the objective function was decomposed into two sub-problems of solving quadratic optimization and sparse regularization with the idea of penalty function, and the alternative iteration methods were used to reduce the solution complexity. The Monte Carlo simulations with Derenzo phantom were applied to compare the efficiency of different algorithms, and the results show that the proposed methods perform better than the traditional algorithms. The thesis further investigated the effect of the system temporal resolution and time acquisition interval on the quality of the image reconstruction, the results show that the higher time resolution and shorter acquisition time interval can get better reconstruction results.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期792-798,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(31200746) 浙江省科技厅公益研究项目(2013C33166) 浙江理工大学521人才培养计划
关键词 正电子发射型计算机断层成像 图像重建 飞行时间 稀疏正则化 全变差 小波变换 positron emission tomography image reconstruction time of flight sparse regularization total vari-ation wavelet transform
  • 相关文献

参考文献20

  • 1Saha G B. Basics of PET imaging: physics, chemistry, and reg- ulations[M]. Heidelberg: Springer, 2010:41-85.
  • 2Zeng G S. Medical image reconstruction: a conceptual tuto- rial[M]. Beijing: Higher Education Press, 2009:125-171.
  • 3Allemand R, Gresset C, Vacher J. Potential advantages of a ce- sium fluoride scintillator for a time-of-flight positron camera[J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 1980, 21(2): 153-155.
  • 4Snyder D L, Thomas L J, Ter-Pogossian M M. A mathematical model for positron emission tomography systems having time- of-flight measurements[J]. IEEE Transactions on Nuclear Science, 1981, 28(3): 3575-3583.
  • 5Conti M, Bendriem B, Casey M, et al. First experimental re- suits of time-of-flight reconstruction on an LSO PET scanner[J] Physics in Medicine and Biology, 2005, 50(19): 4507-4526.
  • 6Candes E J, Romberg J, Tao T. Stable signal recovery from in- complete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Starek J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational ap- proach[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1570-1582.
  • 9李志林,陈后金,李居朋,姚畅,杨娜.一种有效的压缩感知图像重建算法[J].电子学报,2011,39(12):2796-2800. 被引量:13
  • 10朱宏擎,舒华忠,罗立民,等.正电子发射计算机断层显像的全变分加权成像方法:中国,200510037621.8[P].2005-01-06.

二级参考文献45

  • 1练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 2朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 3Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 6Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 7Candcs E J, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.
  • 8Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571.
  • 9Ma J W. Compressed sensing by inverse scale space and curvelet thresholding. Applied Mathematics and Computation, 2008, 206(2): 980-988.
  • 10Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 2005, 14(10): 1570-1582.

共引文献39

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部