期刊文献+

V-系统与Radon变换相结合的纹理分类算法 被引量:5

Novel Algorithm for Image Texture Classification Combined the V-system with Radon Transform
下载PDF
导出
摘要 为了对尺度和旋转变换下的纹理图像进行正确的分类,将Radon变换和V-系统相结合,提出一种纹理分类的算法.首先利用Radon变换将图像的旋转化为平移,再对Radon变换后的图像进行V-变换;利用V-系统的多小波特性,经过一系列的降采样分解过程得到图像在V-系统下的各层次能量表达,并将这些能量作为纹理图像的特征描述.由于V-系统的多小波特性以及Radon变换对旋转的消除,使得文中的特征描述在图像的放缩和旋转变换下有较强的鲁棒性.在通用纹理数据库中的纹理分类实验结果表明了该算法的优越性能. To classify the scaled and rotated texture images correctly, this paper proposes a new algorithm for texture classification by combining Radon transform and the V-system. We firstly use the Radon trans-form to convert the image rotation into the image translation, and then apply the V-transform on the image obtained after Radon transform. The energies of the image on different levels under the V-system are ex-pressed by performing a series of downsampling process due to the multi-wavelet characteristics of the V-system. These obtained energies are used as the texture feature description. The feature description method in this paper is robust to the image scaling and rotation because of the multi-resolution characteris-tics of the V-system and elimination of rotation by applying Radon transform. Results of the experiments conducted on the standard texture datasets show that the proposed algorithm provides superior performance.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期907-914,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2011CB302400) 国家自然科学基金(61272026) 北京市自然科学基金重点项目暨北京市教委科技发展计划重点项目(KZ201210009011)
关键词 V-系统 RADON变换 多小波 多分辨 纹理分类 V-system Radon transform multi-wavelet multi-resolution texture classification
  • 相关文献

参考文献19

  • 1Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610-621.
  • 2Pentland A P. Fractal-based description of natural scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1984, 6(6): 661-674.
  • 3Sarkar N, Chaudhuri B B. An efficient differential box-coun- ting approach to compute fractal dimension of image[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(1): 115-120.
  • 4Florindo J B, Bruno O M. Fractal descriptors based on the probability dimension: a texture analysis and classification ap- proach[J]. Pattern Recognition Letters, 2014, 42(1): 107-114.
  • 5Ojala T, Pietikuinen M, Muenpuu T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 6Yuan F. Rotation and scale invariant local binary pattern based on high order directional derivatives for texture classification[J] Digital Signal Processing, 2014, 26(1): 142-152.
  • 7Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
  • 8Chang T, Kuo C C. Texture analysis and classification with tree -structured wavelet transform[J]. IEEE Transactions on Image Processing, 1993, 2(4) : 429-441.
  • 9Unser M. Texture classification and segmentation using wave- let frames[J]. IEEE Transactions on Image Processing, 1995, 4(11): 1549-1560.
  • 10Kourosh J K, Hamid S Z. Rotation-invariant multiresolution texture analysis using radon and wavelet transforms[J]. IEEE Transactions on Image Processing, 2005, 14(6): 783-795.

二级参考文献54

  • 1蔡占川 孙伟 齐东旭.基于正交完备U-系统的图形分类与识别方法.软件学报,2006,17(1):21-27.
  • 2Song, R. X., Ma, H., Wang, T. J., et al.: The complete orthogonal V-system and its application. Commun. Pure Appl. Anal., 6(3), 853-871 (2007).
  • 3Alpert, B.: A class of bases in L^2 for the sparse representation of integral operators. SIAM J. Math. Anal., 24, 246-262 (1993).
  • 4Micchelli, C. A., Xu, Y. X.: Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl. Comput. Harmon. Anal., 1, 391-401 (1994).
  • 5Strela, V.: Multiwavelets: Theory and Applications, PhD thesis, MIT, 1996.
  • 6Goodman, T. N. T., Lee, S. L.: Wavelets of multiplicity r. Trans. Amer. Math. Soc., 338(2), 639-654 (1994).
  • 7Geronimo, J., Hardin, D., Massopust, P.: Fractal function and wavelet expansions based on several scaling function. J. Approx. Theory, 78, 373-401 (1994).
  • 8Geronimo, J., Hardin, D., Massopust, P.: Construction of orthogonal wavelets using fractal interpolution functions. SIAM J. Math. Anal., 27, 1158-1192 (1996).
  • 9Li, S.: Multivariate refinement equations and convergence of cascade algorithms in Lp (0 < p < 1) spaces. Acta Mathematica Sinica, English Series, 19(1), 97-t06 (2003).
  • 10Feng, Y. Y., Qi, D. X.: A sequence of piecewise orthogonal polynomials. SIAM J. Math. Anal., 15(4), 834-844 (1984).

共引文献26

同被引文献43

  • 1齐东旭,陶尘钧,宋瑞霞,马辉,孙伟,蔡占川.基于正交完备U-系统的参数曲线图组表达[J].计算机学报,2006,29(5):778-785. 被引量:25
  • 2刘玉杰,李宗民,李华,齐东旭.三维U系统矩与三维模型检索[J].计算机辅助设计与图形学学报,2006,18(8):1111-1116. 被引量:11
  • 3梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 4M andelbrot B B. The fractal geometry o f nature[M]. New York:W. H. Freeman & Co Ltd, 1983.
  • 5Peitgen H 0 , R ichter P H. The beauty o f fractals[M]. Heidelberg:Springer, 1986.
  • 6Barnsley M F. Fractal everywhere[M]. Boston: Academic Press,1988.
  • 7Falconer K . Fractal geometry: mathematical foundations andapplications [M]. 2nd ed. New York: W iley, 2013.
  • 8Siddiqi S S, Idrees U , Rehan K . Generation o f fractal curvesand surfaces using ternary 4-point interpolatory subdivisionscheme[J]. Applied Mathematics and Computation, 2014, 246:210-220.
  • 9Siddiqui S S, Siddiqui S, Ahmad N . Fractal generation usingternary 5-point interpolatory subdivision scheme[J]. AppliedMathematics and Computation, 2014,234: 402-411.
  • 10Femandez-Martinez M , Sanchez-Granero M A . Fractal dimension fo r fractal stmctures[J]. Topology and Its Applications,2014,163:93-111.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部