摘要
为了对尺度和旋转变换下的纹理图像进行正确的分类,将Radon变换和V-系统相结合,提出一种纹理分类的算法.首先利用Radon变换将图像的旋转化为平移,再对Radon变换后的图像进行V-变换;利用V-系统的多小波特性,经过一系列的降采样分解过程得到图像在V-系统下的各层次能量表达,并将这些能量作为纹理图像的特征描述.由于V-系统的多小波特性以及Radon变换对旋转的消除,使得文中的特征描述在图像的放缩和旋转变换下有较强的鲁棒性.在通用纹理数据库中的纹理分类实验结果表明了该算法的优越性能.
To classify the scaled and rotated texture images correctly, this paper proposes a new algorithm for texture classification by combining Radon transform and the V-system. We firstly use the Radon trans-form to convert the image rotation into the image translation, and then apply the V-transform on the image obtained after Radon transform. The energies of the image on different levels under the V-system are ex-pressed by performing a series of downsampling process due to the multi-wavelet characteristics of the V-system. These obtained energies are used as the texture feature description. The feature description method in this paper is robust to the image scaling and rotation because of the multi-resolution characteris-tics of the V-system and elimination of rotation by applying Radon transform. Results of the experiments conducted on the standard texture datasets show that the proposed algorithm provides superior performance.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2015年第5期907-914,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家"九七三"重点基础研究发展计划项目(2011CB302400)
国家自然科学基金(61272026)
北京市自然科学基金重点项目暨北京市教委科技发展计划重点项目(KZ201210009011)
关键词
V-系统
RADON变换
多小波
多分辨
纹理分类
V-system
Radon transform
multi-wavelet
multi-resolution
texture classification