期刊文献+

一种基于成对采样和选择性集成的隐写分析算法 被引量:3

A steganalysis algorithm based on paired sampling and selective ensemble
原文传递
导出
摘要 为了进一步提高隐写分析算法的检测精度,提出了一种基于成对采样选择性集成的隐写分析算法。从集成分类的特点和隐写分析的特殊性出发,分析了类内以及类间样本之间的联系,研究了4种不同的采样策略,并基于成对采样策略构建选择性集成分类器用于隐写分析。实验表明,不同采样策略能不同程度地影响隐写分析的检测性能;与现有隐写分析方法相比,本文算法能明显降低隐写分析系统的检测错误率(BER)。 A novel steganalysis algorithm based on paired sampling and selective ensemble is proposed to improve detection accuracy of steganalysis. Considering the characteristics of ensemble classification and the particularity of steganalysis, we analyze the relation between two classes of samples and the link a- mong samples of the same class, put forward four different sampling strategies, and build selective en- semble classifier based on paired sampling strategy for steganalysis. Experimental results showed that different sampling strategies could influence the performance of detection in steganalysis to some extent. Compared with the existing methods in steganalysis, the proposed method can significantly reduce the er- ror rate in detection performance of steganalysis system.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第4期746-751,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61379152 61403417 61402530) 陕西省自然科学基金(2014JQ8301)资助项目
关键词 信息隐藏 隐写分析 成对采样 选择性集成 information hiding steganalysis paired sampling selective ensemble
  • 相关文献

参考文献17

  • 1Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on In- formation Forensics and Security, 2012,7 (2): 432-444.
  • 2时晨曦,张敏情.基于改进增强特征选择算法的特征融合图像隐写分析[J].光电子.激光,2014,25(3):551-557. 被引量:4
  • 3杨任尔,郑紫微,金炜.基于图像特征的隐写术载体图像的选择[J].光电子.激光,2014,25(4):764-768. 被引量:11
  • 4张敏情,雷雨.基于小波系数相关性的空域隐写分析方法[J].光电子.激光,2012,23(5):972-979. 被引量:4
  • 5Cogranne R, Zitzmann C, Retraint F, et al. A local adap- tive model of natural images for almost optimal detection of hidden data[J]. Signal Processing, 2014,100(1) : 169- 185.
  • 6Thai T,Cogranne R,Retraint F. Statistical model of quan- tized DOT coefficients: Application in the steganalysis of JSteg algorithm[J]. IEEE Transactions on Image Process- ing, 2014,23(5) : 1-14.
  • 7Cogranne R, Retraint F. An asymptotically uniformly most powerful test for Isb matching detection[J]., tEEE Trans- actions on Information Forensics and Security, 2013, 8 (3) :464-476.
  • 8Holub V, Fridrich J. Random projections of residuals for digital image steganalysis[J]. IEEE Transactions on Infor- mation Forensics and Security,2013,8(12) :1996-2006.
  • 9Kodovsky J,Sedighi V, Fridrich J. Study of cover source mismatch in steganalysis and ways to mitigate its impact[A]. Prec. of SPIE[C]. 2013,9028 : 10-22.
  • 10毕凯,王晓丹,姚旭,周进登.一种基于Bagging和混淆矩阵的自适应选择性集成[J].电子学报,2014,42(4):711-716. 被引量:24

二级参考文献68

  • 1张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 2王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 3Dong J,Chen X C,Guo L,et al. Fusion based blind image steganalysis by boosting feature selection [A]. Proc. of 2007 International Workshop on Digital Watermarking [C]. 2008,87-98.
  • 4Miche Y,Roue B,Lendasse A,et al. A feature selection methodology for steganalysis[A]. Proc. of the Multimedia Content Representation, Classification and Security[C].2006,49-56.
  • 5ZHANG Min-qing,LEI Yu. Spatial domain image steganal- ysis based on wavelet coefficient dependency[J]. Journal of Optoclectronics · Laser, 2012,23(5) : 972-979.
  • 6Freund Y,Schapire R E A Decision-theoretic generaliza- tion of on-Line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1 997,55 (1) :119-139.
  • 7Kearns M, Valiant L G. CryptegraphJc limJtatJons on learning boolean formulae and finite automata[J]. Journal of the AOM,1994,41(1) :67-95.
  • 8Kedovsky J,Fridrich J. Calibration revisited [A]. Prec. of the 11th ACM Workshop on Multimedia and Security[C].2009,63-73.
  • 9Davidson J,Jalan J. Steganalysis using parti&lly ordered Markov models[A]. Proc. of the 12th Int'l Workshop on Information Hiding[C]. 2010,143-157.
  • 10Shi Y Q,Chen C H,Ohen W. A Markov process based ap- proach to effective attacking JPEG steganography[A]. Proc. of the 8th Int'l Workshop on Information Hiding[C]. 2007,249-264.

共引文献37

同被引文献33

  • 1赵鸿冰,林代茂,杨怀江.利用反馈控制直方图失真的隐写方法[J].光学精密工程,2006,14(4):720-724. 被引量:6
  • 2Chang CC and Lin CJ. L[BSVM: a Library for Support Vector Machines [ J ]. Acm Transactions on Intelligent Systems & Technology, 2011, 2(3):389-396.
  • 3Farid H and Si wei. L. Detecting hidden messages using high- er-order statistics and support vector machines [ C ]. Informa- tion Hiding, 5th International Workshop 2002, 2578: 340---354.
  • 4Avc ba Y, Khan-azl M, Memon N D, and Sankur B. Im- age steganalysis with binary similarity measures [ J ]. Journal on Applied Signal Processing, 2005, 17:2749 - 2757.
  • 5Fridrich J. Feature-based steganalysis for JPEG images and its implications for future design of steganagraphic schemes [ C ]. Information Hiding, 6th International Workshop, 2004, 3200: 67-81.
  • 6Goljan M, Fridrich J, and Holotyak T. New blind steganal- ysis and its implications [ C ]. Proceedings SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Mul- timedia Contents VIII, 2006, 60(72):1-13.
  • 7Pevny T and Fridrich J. Merging Markov and DCT features for multi-class JPEG steganalysis [ C ]. Proceedings SPIE, Elec- tronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, 2007, 6505 : 1 - 3.
  • 8Shi Y Q, Chen C , and Chert W. A Markov process based ap- proach to eft ective attacking JPEG steganography. Information Hiding [C], 8th International Workshop, volume 2006,4437: 249 - 264.
  • 9Chen C and Shi YQ. JPEG image steganalysis utilizing both in- trabtock and interblock correlations [ C ]. In Circuits and Sys- tems, ISCAS, 2008:3029 - 3032.
  • 10BryU R, Gutierrez-Osuna R, and Quek F. Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets [ J ]. Pattern Recognition, 2003, 36 ( 6 ) : 1291 - 1302.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部