期刊文献+

仿人足底肌电特征的机器人行走规划 被引量:6

Humanoid Walking Planning Based on EMG from Human Foot-bottom
下载PDF
导出
摘要 模仿人类行走规律是规划双足机器人运动的基础.以往模仿人类步态主要通过视觉方法或惯性模块测量(Inertia measurement unit,IMU)方法捕捉人体特征点轨迹.这些方法不考虑零力矩点(Zero moment point,ZMP)的相似性.为解决该问题,本文提出了一种基于足底肌电信号(Electromyography,EMG)和惯性模块测量信号的混合运动规划方法.该方法通过测量足底肌电信号计算出足底压力中心的位置以及踝关节扭矩,结合惯性模块所测量的人体躯干和双足轨迹,来规划双足机器人的步态.首先,用肌电仪测量足底肌电信号,用惯性测量模块测量人体各肢体部分的姿态轨迹,经数据标定后作为仿人机器人的运动参考;然后,通过预观控制输出稳定的步态.为确保仿人行走的效果,基于人体相似性对运动数据进行了步态优化.实验验证和分析表明,EMG信号超前ZMP约160 ms,利用这个特性实现了对压力点位置的有效预测,提高了机器人在线模仿人类行走的稳定性. The research on mimicking human-like walk lays a basis for biped walking motion. The conventiaonal method of realising human-like walk is using computer vision or inertia measurement unit (IMU) to capture the feature points of human body. However, these methods do not consider the zero moment point (ZMP) similarity. To tackle this problem, this paper proposes a hybrid motion planning method based on foot-bottom electromyography (EMG) signal and IMU measurement. This method uses the measurement of EMG under foot bottom to estimate the ZMP and ankle torque and plans the robot gait combining the measurement of trajectories of human trunk and feet. First, the bionic data from human is calibrated and transformed as motion reference for the robot. Then the dynamic balanced walking motion is generated by preview control. To ensure the human-like feature, the planned motion is optimised based on human similarity. Finally, it is validated by experiments and analysis that EMG signal is advanced 160 ms before ZMP change. The short time prediction of ZMP is realized with higher degree of likeness with human motion.
出处 《自动化学报》 EI CSCD 北大核心 2015年第5期874-884,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61071057 51405073) 辽宁省高等学校创新团队项目(LT2014006)资助~~
关键词 仿人机器人 拟人行走规划 预观控制 足底肌电信号 Humanoid robot, human-like walk planning, preview control, electromyography (EMG)
  • 相关文献

参考文献35

  • 1Johansson G. Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 1973, 14(2): 201-211.
  • 2Troje NF. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of vision, 2002, 2(5): 2.
  • 3Yamane K, Nakamura Y. Natural motion animation through constraining and deconstraining at will. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(3): 352-360.
  • 4Dasgupta A, Nakamura Y. Making feasible walking motion of humanoid robots from human motion capture data. 1999 Proceedings 1999 IEEE International Conference on Robotics and Automation: IEEE 1999. 1044-1049.
  • 5Hofmann A, Popovic M, Herr H. Exploiting angular momentum to enhance bipedal center-of-mass control. IEEE International Conference on Robotics and Automation (ICRA): IEEE 2009. 4423-4429.
  • 6Harada K, Miura K, Morisawa M, Kaneko K, Nakaoka S, Kanehiro F, Tsuji T, et al. Toward human-like walking pattern generator. IEEE/RSJ International Conference on Intelligent Robots and Systems 2009. 1071-1077.
  • 7Kajita S, Miura K, Morisawa M, Kaneko K, Kanehiro F, Yokoi K. Evaluation of a stabilizer for biped walk with toe support phase. 12th IEEE-RAS International Conference on Humanoid Robots 2012. 586-592.
  • 8Galdeano D, Bonnet V, Bennehar M, Fraisse P, Chemori A. Partial human data in design of human-like walking control in humanoid robotics. SYROCO 2012. 10(1): 485-490.
  • 9Miura K, Morisawa M, Kanehiro F, Kajita S, Kaneko K, Yokoi K. Human-like walking with toe supporting for humanoids. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): IEEE 2011. 4428-4435.
  • 10Ogura Y, Shimomura K, Kondo H, Morishima A, Okubo T, Momoki S, Hun-ok L, Takanishi A. Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems: IEEE 2006. 3976-3981.

同被引文献35

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部