期刊文献+

热堆中钍铀转化规律 被引量:2

Simulation study on ^(232)Th-^(233)U conversion in thermal reactors
原文传递
导出
摘要 钍铀燃料循环以其优异的物理和化学特性,受到核能界的广泛关注。本文利用单群的点燃耗计算程序ORIGEN,分别研究了钍燃料在沸水堆(Boiling Water Reactor,BWR)、压水堆(Pressurized Water Reactor,PWR)和加拿大重水铀反应堆(Canada Deuterium Oxide Uranium,CANDU,又称坎杜堆)能谱中辐照时,232Th、233Th、233Pa、233U等核素生成量随中子注量率和中子能谱的变化规律,并探索了多次"辐照-冷却"循环对钍铀转化率的影响。计算结果表明,能谱相同时,233Th和233Pa存量的最大值与注量率有关;233U存量的最大值与注量率无关,大概在注量(注量率×时间)为4×1016 n·cm-2左右;注量率相同时,能谱越硬,233U存量的最大值越大。采取循环"辐照-冷却"可以提高233Th-233U的转化率,对于相同的总辐照时间,每次循环周期内的辐照时间越短,相对于总辐照时间相同的单次辐照,转化率增量提高越明显;当总辐照时间超过两个月时,循环辐照对转化率增量的作用较小,与单次辐照不冷却相比,转化率相对增量不超过1倍。 Background: Thorium-uranium fuel cycle is attracting more and more attention because of its unique physical and chemical characteristics. Purpose: Realizing the utilization of thorium fuel in thermal reactors can save the valuable natural uranium resources and produce more fissile fuel, which is conducive to the nuclear energy sustainable development. Methods: ORIGEN code was used to simulate the build-up characteristics of 232Th, 233Th, 233pa and 233U in neutron fluency rates and neutron spectra of typical Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR) and Canada Deuterium Oxide Uranium (CANDU) reactor, and the effects of multiple "irradiation-cooling" cycles on the thorium uranium conversion rate under various irradiation time were analyzed by numerical comparison. Results: Simulation results showed that the maximum inventory of 233Th and 233pa is irrelevant to the neutron fluency rates when neutron spectrum is fixed. When the neutron fluency rates are preset, the harder the neutron spectrum is, the larger the maximum inventory of 233U will be obtained. Multiple "irradiation-cooling" cycles can improve the conversion rate of 232Th-233U, but the relative increment is becoming smaller and smaller, compared to the continuous irradiation conversion rate. Conclusion: This work provides relevant theoretical basis for thermal reactors thorium-uranium fuel cycle research.
出处 《核技术》 CAS CSCD 北大核心 2015年第5期78-85,共8页 Nuclear Techniques
基金 中国科学院战略性先导科技专项(No.XDA02030200)资助
关键词 中子注量率 中子能谱 钍铀转化率 Neutron fluence rate Neutron spectrum Conversion rate of 232Th-233U
  • 相关文献

参考文献12

  • 1张家骅,包伯荣.我国钍资源调查及钍-铀燃料循环研究[A].张家骅.钍-铀核燃料循环研究[C].上海:中国科学院上海应用物理研究所,2009:22-26.
  • 2Troyanov M F. Thorium fuel utilization: options and trends[R]. Vienna: IAEA-TECDOC-1319, 2002.
  • 3Furukawa K, Lecocq A, Kato Y, et al. Thorium molten-salt nuclear energy synergetics[J]. Journal of Nuclear Science and Technology, 1990, 27(12): 1157-1178.
  • 4Furukawa K, Mitachi K, Kato Y, et al. Small molten-salt reactors with a rational thorium fuel-cycle[J]. Nuclear Engineering and Design, 1992, 136(1): 157-165.
  • 5Murogov V M, Zinin A J, Ilyunin V G, et al. Fast reactors with different fuels in uranium-plutonium and combined fuel cycle[G]. IPPE-1920, 1998, 23(1): 203-206.
  • 6Rutten H J, Teuchert E. Advanced safety features of pebble bed HTR's with Th-utilization[R]. Julich: KFA, 1993.
  • 7Yu J Y, Wang K, Sollychin R, et al. Thorium fuel cycle of a thorium-based advanced nuclear energy system[J]. Progress in Nuclear Energy, 2004, 45(1): 71-84.
  • 8Chang J J, Chang J P, Won I K. Dynamic analysis of a thorium fuel cycle in CANDU reactors[J]. Annals of Nuclear Energy, 2008, 35(10): 1842-1848.
  • 9Yamamoto T, Suwarno H, Kayano H, et al. Development of new reactor fuel materials[J]. Journal of Nuclear Science and Technology, 1995, 32(3): 260-262.
  • 10Croft A G. A user's manual for the ORIGEN2 computer code[M]. USA: Oak Ridge National Laboratory, 1980.

二级参考文献16

  • 1Thorium fuel cycle - Potential benefits and challenges. IAEA-TECDOC-1450, 2005.
  • 2Jungmin Kang, Frank N. yon Hippel, U-232 and the Proliferation-Resistance of U-233 in Spent Fuel[J]. Science & Global Security, 2001, 9:1-32.
  • 3Takaaki Ohsawa, Masaharu Inoue. Analysis of neutron yields and energy spectra from spent molten-salt reactor fuel[J]. Ann Nucl Energy, 1994, 21(4): 207 -210.
  • 4Belle J, Berman R M. Thorium dioxide: properties and nuclear applications, DOE/NE-0060, 1984.
  • 5Saed Mirzadeh, Phillip Walsh. Numerical evaluation of the production of radionuclides in a nuclear reactor (Part I) [J]. Appl Radiat Isot, 1998, 49(4): 379-382.
  • 6Croft A G. A user's manual for the ORIGEN2 computer code. ORNL/TM-7175, 1980.
  • 7Dehart M D, Bowman S M. Reactor physics methods and analysis capabilities in SCALE[J]. Nuclear Technology, 2011, 174:196-213.
  • 8Croft A G, Bjerke M A, Morrison G W, et al. Revised uranium-plutonium cycle PWR and BWR models for the ORIGEN computer code. ORNL/TM-6051, 1978.
  • 9Zhang J H, Bao B R, Xia Y X, et al. The dependence of build-up 233U, 232U, 233pa and fission products from ThO2 irradiated in HFETR on integral thermal neutron fluxes and neutron spectra[J]. Journal of Radioanalytical and Nuclear Chemistry, Letters, 1987, 117(2): 121-127.
  • 10Horhoiany G, Moscalu D R, Olteanu G, et al. Development of SEU-43 fuel bundle for CANDU type reactors[J]. Ann Nucl Energy, 1998, 25(16): 1363-1372.

共引文献6

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部