期刊文献+

中外高水平涉农高校的学科结构特征比较——基于QS世界大学农业学科排名的科学计量学分析 被引量:6

A Comparison of Disciplinary Structure among Top 50 Agriculture-related Universities in the World by Scientometrics
下载PDF
导出
摘要 以QS世界大学排名中农业学科领域前50位大学发表的科学论文为分析对象,利用重复二分法聚类、科学层叠图等科学计量学方法,分析比较各个高校的学科结构特征。分析结果表明,世界高水平涉农高校的农业科学学科建设可以划分为五种模式,即:以农业科学为主体,倾斜式的学科发展;以农业科学为特色,均衡式的学科发展;以人文社会科学为基础,互动式的学科发展;以理工学科为根基,驱动式的学科发展;以相邻学科为优势,协同式的学科发展。我国涉农高校的决策部门应学习、借鉴和吸收这些学科结构模式中的积极要素,结合本校学科建设的实际情况,制定长期的学科发展规划,优化学科的结构布局。 Based on a scientometric analysis of papers published by top 50 universities in agricultural science according to QS world university rankings, this article compares their disciplinary structure. The research results show that five modes can be classified for those uni- versities in the development of agricultural science, including slantingly unbalanced development with agricultural science as a mainstay, balanced development with agricultural science as a feature, interactive development with humanities and social sciences as a base, knowl- edge-driven development with science and engineering disciplines as a root, and coordinative development with adjacent disciplines as an advantage. Agriculture-related universities in China should absorb those positive elements in the five modes to make a long-term plan for disciplinary development and improve disciplinary structure.
出处 《情报杂志》 CSSCI 北大核心 2015年第5期92-97,共6页 Journal of Intelligence
关键词 学科结构 农业科学 QS世界大学排名 科学计量学 重复二分法 科学层叠图 disciplinary structure agricultural science QS world university ranking scientometrics repeated bisection science overlay map
  • 相关文献

参考文献11

二级参考文献32

  • 1刘则渊.科学学理论体系建构的思考——基于科学计量学的中外科学学进展研究报告[J].科学学研究,2006,24(1):1-11. 被引量:56
  • 2姜文闵.哈佛大学[M].长沙:湖南教育出版社,1988.1-13.
  • 3Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006,57(3) :359- 377.
  • 4Chen C. Searching for intellectual turning points: Progressive knowledge domain visualization[C]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (Suppl 1) :5303.
  • 5Freeman L. Centrality in social networks conceptual clarification [J ]. Social networks, 1979,1 (3) : 215 - 239.
  • 6Girvan M,Newman M. Community structure in social and biological networks[C]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12) :7821.
  • 7Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003,7 (4) :373- 397.
  • 8White H D,McCain K W. Visualizing a discipline: An author co - citation analysis of information science, 1972- 1995[J]. Journal of the American Society for Information Science, 1998, 49(4) :327- 355.
  • 9Astrom F. Changes in the LIS research front : Time - sliced cocitation analyses of LIS journal articles, 1990- 2004[J] . Journal of the American Society for Information Science and Technology, 2007,58(7) : 947 - 957.
  • 10Zhao D Z,Strotmann A. Evolution of research activities and intellectual influences in information science 1996- 2005: Introducing author bibliographic- coupling analysis [J]. Journal of the American Society for Information Science and Technology, 2008,59(13) : 2070 - 2086.

共引文献104

同被引文献78

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部