期刊文献+

面向复合维信息特征的微博舆情事件感知方法 被引量:1

Composite Dimensional Information Characteristics Oriented towards Microblogging Public Opinion Event Detection Method
下载PDF
导出
摘要 微博的短文本与半结构化特征,使得传统的基于热点词的舆情事件检测方法已不适用。对于微博的热点发现,需要充分利用微博特有的信息特征,构建适应于微博的热点感知方法。通过对微博的文本特征和社会化关系特征进行无监督聚类,提出一种基于LDA主题模型,面向复合维信息特征的微博舆情事件感知方法。实验表明,该方法在话题挖掘以及话题热点计算上有良好的效果。 The short nature of microblogging and its semi-structured characteristics, making traditional public opinion event detection methods based on the hot words is no longer applicable. Making full use of specific characteristics of microblogging and constructing a method that adapted to the characteristics is needed to discovery the hot topic of microblogging. Based on the theme model of LDA, this paper puts forward a kind of composite dimensional information characteristics oriented towards microblogging public opinion event detection method by text features and characteristics of social relations of microblogging for unsupervised clustering. Experiments show that the method has a good effect on the topic mining and hot topic of calculation.
出处 《情报杂志》 CSSCI 北大核心 2015年第5期146-153,共8页 Journal of Intelligence
基金 国家自然科学基金项目"微博环境下实时主动感知网络舆情事件的多核方法研究"(编号:71303075) 湖北省自然科学基金项目"基于机器学习的网络舆情信息挖掘与应用研究"(编号:2011CDB080)的研究成果之一
关键词 微博 主题挖掘 LDA 社交网络 舆情监测 microblog topic mining LDA social networks public opinion monitoring
  • 相关文献

参考文献22

  • 1钱颖,张楠,赵来军,钟永光.微博舆情传播规律研究[J].情报学报,2012,31(12):1299-1304. 被引量:55
  • 2Allan J, Carbonell J, Doddington G, et al. Topic Detection and Tracking Pilot Study final Report[ C]//Proceedings of the DAR- PA Broadcast News Transcription and Understanding Workshop, 1998 : 194-218.
  • 3G Salton, A Wong, C S Yang. A Vector Space Model for Auto- matic Indexing. Communications of ACM, 1974,18 (5):613 - 620.
  • 4Jay M. Ponte, W. Bruce Croft. A Language Modeling Ap- proach to Information Retrieval[ C] //Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval( SIGIR' 98 ), New York, NY, USA: ACM, 1998:275-281.
  • 5Dumals S, Furnas G, Landauer T, et al. Using Latent Semantic Analysis to Improve Access to Textual Information [ C ]//Pro- ceedings of Computer Human Interaction. Washington: ACM, 1988:281-285.
  • 6Thomas K. Landauer, Peter W. Foltz, Darrell Lahaml An In- troduction to Latent Semantic Analysis. Discourse Processes, Vol. 25, 1998:259-284.
  • 7Hofmann T. Probabilistic Latent Semantic Indexing [ C ]//Pro- ceedings of the 22th Annual International SIGIR Conference on Research and Development in Information Retrieval. UC Berke- ley, CA: Assoc Computing Machinery, 1999:50-57.
  • 8Thomas Hofmann. Unsupervised Learning by Probabilistic Latent Semantic analysis. Mach. Learn. , 2001,42(1-2) :177-196.
  • 9Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [ J ]. Journal of Machine Learning Research, 2003,3 ( 4 - 5 ) : 993 - 1022.
  • 10李勇,桑艳艳.网络文本数据分类技术与实现算法[J].情报学报,2002,21(1):21-26. 被引量:29

二级参考文献104

共引文献842

同被引文献22

引证文献1

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部