期刊文献+

Hadoop平台中MapReduce调度算法研究 被引量:11

RESEARCH ON MAPREDUCE SCHEDULING ALGORITHM ON HADOOP PLATFORM
下载PDF
导出
摘要 MapReduce是一种新型的并行计算框架,在计算速度,容错性,可靠性等方面具有优势,因此得到了广泛的商业应用与科学研究。而调度算法作为MapReduce的核心组成部分,它的优劣成为了直接影响MapReduce性能的关键因素,因而得到了很大的关注。在介绍和分析MapReduce并行计算模型的基础上,介绍了几种相关的模型改进,并基于Hadoop平台,重点研究了MapReduce的常用调度算法及改进算法。通过对比分析,就MapReduce未来的发展进行了进一步的探讨,为其调度算法的改进提供有效的方法。 MapReduce is a new parallel computing framework which has lots of advantages in many aspects, such as computing speed, fault tolerance and reliability, so it has been widely used in business applications and scientific research. The advantages and disadvantages of the scheduling algorithm, as the core component of MapReduce, have attracted a lot of attention because they directly affect the performance of MapReduce. After introducing and analysing the MapReduce parallel computing model, we present several related improved models, and on Hadoop-based platform we put the focus on studying common MapReduce scheduling algorithm and its improved algorithm. By comparative analysis, we further investigate the future development of MapReduce scheduling algorithm and provide an effective way to improve it.
出处 《计算机应用与软件》 CSCD 2015年第5期1-6,16,共7页 Computer Applications and Software
基金 国家科技部重大科技支撑计划项目(2011BAK21B05) 江苏基础研究计划(自然科学基金)项目(BK2012363) 江苏省工业和信息产业转型升级专项引导资金项目(2011C1)
关键词 云计算 并行计算模型 HADOOP MAPREDUCE 调度算法 Cloud computing Parallel computing model Hadoop MapReduce Scheduling algorithm
  • 相关文献

参考文献54

  • 1孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2392
  • 2陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311
  • 3Mell P, Grance T. The NIST definition of cloud computing[ J/OL]. National Institute of Standards and Technology Special Publication 800 - 145, September 2011.
  • 4Armbrust M, Fox A, Griffith R, et al. Above the clouds: a Berkeley view of cloud computing. UCB/EECS-2009-28 ~ RJ. Electrical Engi- neering and Computer Sciences, University of California at Berkeley, 2009.
  • 5Arleen M A, Pawlikowski K, Willig A, et al. A framework for re- source allocation strategies in cloud computing environment I C ]// Computer Software and Applications Conference Workshops ( COMP- SACW), 2011 IEEE 35th Annual, 2011 : 261 -266.
  • 6黄瑛,石文昌.云基础设施安全性研究综述[J].计算机科学,2011,38(7):24-30. 被引量:16
  • 7] Lombardi F, Pietro R D. Secure virtualization for cloud computing [ J ]. Journal of Network and Computer Applications, 2011 (34) : 1113 - 1122.
  • 8宋杰,李甜甜,朱志良,鲍玉斌,于戈.云数据管理系统能耗基准测试与分析[J].计算机学报,2013,36(7):1485-1499. 被引量:25
  • 9Ghemawat S, Gobioff H, Leung S T, et al. The Google File System [J~. ACM SIGOPS Operating Systems Review, 2003, 37 (5): 29 -43.
  • 10Dean J, Ghemawat S. MapReduce: Simplied data processing on large clusters [ J]. Communications of the ACM, 2008,51 ( 1 ) : 107 - 113.

二级参考文献383

  • 1魏晓辉,Li Wilfred,徐高潮,胡亮,鞠九滨.利用LSF调度程序的插件机制在Gfarm上实现Data aware调度[J].吉林大学学报(理学版),2005,43(6):763-767. 被引量:2
  • 2Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 3Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 4Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 5Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 6Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 8Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 10Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.

共引文献3741

同被引文献104

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部