期刊文献+

数据挖掘中基于最小遗憾度的偏好感知算法 被引量:3

PREFERENCE PERCEPTION ALGORITHM IN DATA MINING BASED ON REGRET MINIMISATION
下载PDF
导出
摘要 交互学习是数据挖掘的一种重要手段。使用交互学习作为学习系统和用户的交互模型,以向用户提供最大效用结果为目标,通过对用户反馈质量进行定量描述,考察偏好反馈,提出一种基于最小遗憾度的偏好感知算法。此外,还对偏好感知算法的期望遗憾度界限进行分析,并给出该算法的几个扩展版本。最后利用电影推荐任务及网络搜索排名数据验证了该算法的有效性。 Coactive Learning is an important means of data mining. We use coactive learning as the model of interaction between learning system and users, and propose a regret minimisation-based preference perception algorithm targeted at providing for users the maximum utility results through making the quantitative description on the quality of user feedback and studying the preference feedback. Besides, we also analyse the boundary of the expected regret of the preference perception algorithm, and give several extended versions of the algorithms. Finally, we verify the applicability of the algorithm by using movie recommendation task and ranking data of web-search.
作者 孙静
出处 《计算机应用与软件》 CSCD 2015年第5期59-64,共6页 Computer Applications and Software
基金 新疆维吾尔自治区高等学校科研计划项目(XJEDU2011S24)
关键词 交互学习 效用 反馈 遗憾度 偏好感知 电影推荐 网络搜索 Coactive learning Utility Feedback Regret Preference perception Movie recommendation Web-search
  • 相关文献

参考文献11

  • 1Teyssier M, Koller D. Ordering-based search: A simple and effective algorithm for learning Bayesian networks [ J ]. arXiv preprint arXiv: 1207. 1429, 2012.
  • 2Chiang D. Machine Translation [ M ]. Grammars for Language and Genes. Springer Berlin Heidelberg, 2012:51-67.
  • 3Maillard O A, Munos R, Stoltz G. A finite-time analysis of multi- armed bandits problems with kullback-leibler divergences[J], arXiv preprint arXiv : 1105. 5820, 2011.
  • 4Kanzow C, Scheffer T. Static prediction games for adversariaHearning problems [ J ]. Journal of Machine Learning Research, 2012, 13 : 2617 - 2654.
  • 5徐光祐,陶霖密,史元春,张翔.普适计算模式下的人机交互[J].计算机学报,2007,30(7):1041-1053. 被引量:48
  • 6刘建书,李人厚,刘云龙.基于“当前”统计模型的交互式多模型算法[J].系统工程与电子技术,2008,30(7):1351-1354. 被引量:24
  • 7Yue Y, Joachims T. Interactively optimizing information retrieval sys- tems as a dueling bandits problem[ C ]//Proceedings of the 26th Annu- al International Conference on Machine Learning. ACM, 2009 : 1201 - 1208.
  • 8Joachims T, Granka L, Pan B, et at. Evaluating the accuracy of im- plicit feedback from clicks and query reformulations in web search [J~. ACM Transactions on Information Systems (TOIS), 2007, 25 (2): 7-14.
  • 9Manning C D, Raghavan P, Schiitze H. Introduction to information re- trieval [ M ]. Cambridge : Cambridge.University Press, 2008.
  • 10Chapelle O, Chang Y. Yahoo! learning to rank challenge overview J ~. Journal of Machine Learning Research-Proceedings Track, 2011 , 14:1-24.

二级参考文献9

  • 1胡振涛,刘先省.基于“当前”统计模型的一种改进机动目标跟踪算法[J].山东大学学报(工学版),2005,35(3):111-114. 被引量:16
  • 2XU Guangyou,TAO Linmi,ZHANG David,SHI Yuanchun.Dual relations in physical and cyber space[J].Chinese Science Bulletin,2006,51(1):121-128. 被引量:4
  • 3范小军,刘锋,秦勇,张军.基于STF的“当前”统计模型及自适应跟踪算法[J].电子学报,2006,34(6):981-984. 被引量:46
  • 4Li X R, Jilkov V P. Survey of maneuvering target tracking, part Ⅰ: Dynamic models[J]. IEEE Trans. on Aerospace and Electronic System, 2003,39(4) :1333 - 1364.
  • 5Blom H A P. An efficient filter for abruptly changing systems [C] // Proceedings of the 23^rd IEEE Conference on Decision and Control, 1984,(10) :656 - 658.
  • 6Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Trans. on Automatic Control, 1988, 33 (8) : 780 - 783.
  • 7Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple model methods in target tracking: a survey [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 1998,34(1) : 103 - 123.
  • 8Rong Li X, Zhi Xiaorong, Zhang Youmin. Multiple-model estimation with variable structure Part Ⅲ: Model-group switching algorithm[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 35(1):225-241.
  • 9张永胜,嵇成新.一种基于当前统计模型的模糊交互多模型算法[J].火力与指挥控制,2003,28(1):51-55. 被引量:6

共引文献70

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部