期刊文献+

残差补偿粒子滤波在六维力传感器下E膜中的应用

APPLYING RCPF TO LOWER E-TYPE MEMBRANE OF SIX-AXIS FORCE SENSOR
下载PDF
导出
摘要 为减小动载环境下,噪声信号对六维力传感器测量精度的影响,提出一种具有残差补偿步骤的改进粒子滤波算法(RCPF)。该算法以双E型弹性体六维力传感器下E型膜为研究对象,根据挠度和应变的关系,建立非线性系统模型。根据权值蜕化程度,将样本集分层;借鉴残差补偿思想,在粒子重采样前修复先验分布的累积误差,将最新的观测信息融入样本集;基于Thompson-Taylor算法,通过聚合重采样将高、低权值粒子随机组合,产生新粒子集。将优化算法应用于六维力传感器动态测试系统。结果表明,RCPF算法具有更好的估计精度,在保持实时性的同时,有效地提高了六维力传感器的测量精度。 In order to reduce the influence of noise signal on the measurement accuracy of six-axis force sensor in dynamic load environment, we propose an improved particle filtering algorithm which has the residuals compensation steps (RCPF). This algorithm takes the lower E-type membrane of dual-E elastic body six-axis force sensor as the research object, and builds the nonlinear system model based on the relation of deflection and strain. According to the degeneration level of weights, it stratifies the sample sets. Learning from residuals compensation idea, the cumulative error of prior distribution is repaired before resampling the particles and the latest observation information is merged into sample sets as well. Finally, based on Thompson-Taylor algorithm, the RCPF produces new particles set by the random combination of the particles with high and low weights through aggregation resampling. We apply the optimised algorithm to the dynamic test system of six-axis force sensor. Results indicate that it effectively enhances the measurement accuracy of six-axis force sensor while maintaining the real-time performance.
出处 《计算机应用与软件》 CSCD 2015年第5期75-79,共5页 Computer Applications and Software
基金 国家自然科学基金项目(51175001) 安徽省自然科学基金项目(11040606M144)
关键词 双E型弹性体 六维力传感器 下E型膜 粒子滤波 Thompson-Taylor算法 残差补偿 Dual-E elastic body Six-axis force sensor Lower E-type membrane Particle filtering Thompson-Taylor algorithm Resid- uals compensation
  • 相关文献

参考文献13

  • 1梁康桥.特殊应用的多维力/力矩传感器研究与应用[D].合肥:中国科学技术大学,2009.
  • 2Haddab Y, Chert Q, Lutz P. Improvement of strain gauges micro-forces measurement using Kalman optimal filtering [ J 3. Mechatronics, 2009, 33(2):256 -262.
  • 3Gerasimos G Rigatos. Nonlinear Kalman Filters and Particle Filters for integrated navigation of unmanned aerial vehicles [ J ]. Robotics and Autonomous Systems,2012,60 ( 2 ) :978 - 995.
  • 4Gerasimos G, Rigatos. Extended Kalman and Particle Filtering for sen- sor fusion in motion control of mobile robots [ J ]. Mathematics and Computers in Simulation, 2010,81:590 - 607.
  • 5张剑锋,曾国强.扩展卡尔曼粒子滤波在编队卫星相对轨道确定中的应用[J].航天控制,2010,28(4):40-43. 被引量:5
  • 6张琪,胡昌华,乔玉坤.基于权值选择的粒子滤波算法研究[J].控制与决策,2008,23(1):117-120. 被引量:45
  • 7Bolic M, Djuricj P M, Hong S. Resampling algorithms and architectures for distributed particle filters [ J 1. IEEE Trans on Signal Processing, 2005,53 ( 7 ) :2442 - 2450.
  • 8徐芝纶.弹性力学(下册)[M].北京:知识产权出版社,2011:136-145.
  • 9汪志红.电阻应变片式六维力传感器弹性体力学特性的研究[D].芜湖:安徽工程大学,2013.
  • 10赵琳.非线性系统滤波理论[M].北京:国防工业出版社,2012.

二级参考文献28

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3郭细平,夏飞海,刘健,张宁.基于扩展卡尔曼滤波的单星无源定位法[J].通信对抗,2006(4):17-20. 被引量:4
  • 4吕娜,冯祖仁.非线性交互粒子滤波算法[J].控制与决策,2007,22(4):378-383. 被引量:12
  • 5Wang Zhongmin, Miao Dehua,Du Zhijiang . Simultaneous Localization and Mapping for Mobile Robot Based on an Improved Particle Filter Algorithm [ J ]. IEEE, International Conference on Mechatronics and Automation, 2009 : 1106-1110.
  • 6Rigatos G G. Particle Filtering for State Estimation in Nonlinear Industrial Systems [ J ]. IEEE Transaction on Instrumentation and Measurement, 2009,58 ( 11 ) : 3885- 3900.
  • 7William Ng,Jack Li,Simon Godsill,et al.A review of recent results in multiple target tracking[C].Proc of the 4th Int Symposium on Image and Signal Processing and Analysis.Zagreb,2005:40-45.
  • 8Cheng Chang,Rashid Ansari.Kernel particle filter for visual tracking[J].IEEE Signal Processing Letters,2005,12(3):242-245.
  • 9Tao Wei,Huang Yu-fei,Philip Chen.Particle filtering for adaptive sensor fault detection and identification[C].Proc of the 2006 IEEE Int Conf on Robotics and Automation Orlando.Florida,2006:3807-3812.
  • 10Petar M Djuric,Jayesh H Kotecha,Zhang Jian-qui,et al.Particle filtering[J].IEEE Signal Processing Magazine,2003,20(5):19-38.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部