期刊文献+

基于因子分析和序贯概率比检验的结构损伤识别 被引量:2

Structural damage identification based on factor analysis and sequential probability ratio test
下载PDF
导出
摘要 提出一种基于因子分析和序贯概率比检验的结构损伤识别方法。基于健康监测数据提取的结构状态特征不仅受结构状态的影响,而且受环境因素、测量噪声、分析误差的影响。当影响结构状态特征的环境因素未知或者不能完全测量时,基于因子分析可以提取结构状态特征场的公共因子作为环境影响效应的映射,并结合序贯概率比检验识别结构损伤。首先对因子分析的基本理论进行介绍,并建立因子分析的矩阵扩展法,在此基础上讨论基于Mann-Whitney秩和的序贯概率比检验的结构状态判别。最后通过1个斜拉桥的数值算例验证方法的可行性,结果表明该方法能够准确地识别较小的结构损伤。 A novel method of structural damage identification based on factor analysis and sequential probability ratio test was proposed. The structural condition features, which were extracted from the monitoring data, were not only affected by structural condition, but also influenced by environmental factors, measurement noise and analysis errors. When the environmental factors which affected structural condition features were unknown or could not be measured, the common factors of structural condition features field, which were calculated by the factor analysis, could be used to express the influences of environmental factors, and structural damage could be identified based on the sequential probability ratio test. The factor analysis theory was introduced firstly and the matrix excluding method of the factor analysis was derived. And then the structural condition was identified correctly by the sequential probability ratio test based on Mann-Whitney rank sum test. Finally, a numerical example of a cable-stayed bridge was used to validate this method, and the results show that the method can correctly identify small structural damage.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期295-303,共9页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51308338) 上海市自然科学基金资助项目(13ZR1458900) 上海市教委科研创新项目(13YZ060) 上海师范大学重点学科项目(A-7001-12-002007) 上海师范大学原创与前瞻性预研项目(DYL201306)~~
关键词 因子分析 序贯概率比检验 结构损伤识别 健康监测 factor analysis sequential probability ratio test structural damage identification structural health monitoring
  • 相关文献

参考文献18

  • 1Sun L M, Sun Z, Dan D H, et al. Large-span bridge and their health monitoring systems in China[C] // Proceeding of 2007 International Symposium on Integrated Life-Cycle Design and Management ofInfrastructure. Shanghai: Tongji University Press, 2007: 79-95.
  • 2Peeters B, Maeck J, Reeck G D. Vibration-based damage detection in civil engineering: Excitation sources and temperature effects[J]. Smart Materials and Structures, 2001, 10: 518-527.
  • 3Sohn H, Dzwonczyk M, Erik G Straser, et al. An experimental study of temperature effect on modal parameters of the Alamosa canyon bridge[J]. Earthquake Engineering & Structural Dynamics, 1999,28(8): 879-897.
  • 4Xia Y, Hao H, Zanardo G, et al. Long term vibration monitoring of an rc slab: Temperature and humidity effect[J]. Engineering Structures, 2006, 28(3): 441-452.
  • 5Ni Y Q, Hua X G, Fan K Q, et al. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique[J]. Engineering Structures, 2005, 27(12): 1762-1773.
  • 6Abe M, Fujino Y, Yanagihara M, et al. Monitoring of hakucho suspension bridge by ambient vibration measurement[C] // SPIE.3995. Newport Beach, 2000: 237-244.
  • 7Zhang Q W, Fan L C, Yuan W C. Traffic-induced variability in dynamic properties of cable-stayed bridge[J]. Earthquake Engineering & Structural Dynamics, 2002, 31: 2015-2021.
  • 8Li H, Li S L, Ou J P, et al. Modal identification of bridges under varying environmental conditions: Temperature and wind effects[J]. Structural Control and Health Monitoring, 2010, 17: 495-512.
  • 9Pearson K. On lines and planes best fit to systems of points in space[J]. Philos Mag, 1901,6(2): 559-572.
  • 10Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1963,24:417-441.

二级参考文献14

  • 1闵志华,孙利民,淡丹辉.斜拉桥动力特性变化的环境影响因素分析[C]∥大跨度桥梁结构损伤预警及状态评估研讨会.南京:[s.n.],2008:62-71.
  • 2Abe M,Fujino Y, Yanagihara M, et al, Monitoring of Hakucho suspension bridge by ambient vibration measurement [C]// Proceedings of SPIE Vol. 3995. Newport Beach: [s. n.],2000: 237 - 244.
  • 3Li Q S,Xiao Y Q, Wu J R, et al. Typhoon effects on super-tall buildings[J]. Journal of Sound and Vibration, 2008,313 :581.
  • 4Xu Y L, Zhu L D. Buffeting response of long-span cablesupported bridges under skew winds. Part 2 :case study[J]. Journal of Sound and Vibration, 2005,281 : 675.
  • 5上海防汛信息中心,0716号台风“罗莎”台风总结[EB/OL].[2007 - 10 - 20]. http://www.shanghaiwater.gov. cn.
  • 6埃米尔.希缪,罗伯特.H.斯坎伦.风对结构的作用[M].第2版.刘尚培,项海帆,谢霁明译.上海:同济大学出版社,1992.
  • 7Littler J D. An assessment of some of the different methods for estimating damping from full-scale testing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995,57:179.
  • 8Sun L M, Sun Z, Dan D H,et al. Large-span bridge and their health monitoring systems in China[ C]. //Proceeding of 2007 International Symposium on Integrated Life-Cycle Design and Management of Infrastructure, 2007:79 - 95.
  • 9Peeters B, De R G. One-year monitoring of the Z24-Bridge: environmental effects versus damage events [ J ]. Earthquake Eng Struet. Dyn, 2001,30.149 - 171.
  • 10Sohn H, Dzwonczyk M, Straser E G, et al. An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge [ J ], Earthquake Eng. Struct. Dyn, 1999,28 : 879 - 897.

共引文献34

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部