期刊文献+

柽柳中一种新型硫氧还蛋白H基因的克隆与鉴定(英文) 被引量:2

Cloning and Identification of a Novel thioredoxin h Gene from Tamarix hisipida
下载PDF
导出
摘要 硫氧还蛋白对维持生物体内稳定的氧化还原状态发挥着重要作用。为了研究硫氧还蛋白在非生物胁迫条件下的功能,我们从柽柳的cDNA文库中分离出来一条新的硫氧还蛋白cDNA序列,命名为ThTrx1。生物信息学分析表明,ThTrx1是硫氧还蛋白h亚家族的一个新成员,属于h1亚族。我们采用实时定量RT-PCR的方法检测在不同非生物胁迫(NaCl,PEG,CdCl2,低温和ABA)下,ThTrx1基因在刚毛柽柳根和叶中的表达。结果表明,在NaCl,PEG,CdCl2和ABA处理条件下,ThTrx1在柽柳根和叶中的mRNA水平都是上调表达。而在低温胁迫下,ThTrx1下调表达。我们通过Thrx1基因在大肠杆菌中的表达来分析它对于细菌生长和耐受性的影响。结果表明,含重组质粒的大肠杆菌(pET32a-Trx1)与对照相比,对于盐,金属离子和干旱胁迫体现出更高的耐受性。我们的结果表明,该ThTrx1是参与非生物胁迫应答,并且受依赖ABA信号转导途径的调节。 Thioredoxins play an important role in various cellular processes through redox regulation. We isolated a novel Trx eDNA sequence, ThTrxl, from cDNA libraries of T. hisipida to characterize their functions under abiotic stress. By bioinformatic analysis, ThTrxl is a new member of the thioredoxin h subfamily and belongs to subgroup 1. We used real-time quantitative RT-PCR to examine ThTrxl gene expression in roots and leaves under different abiotic stresses ( NaCl, PEG, CdCl_2, low temperature and ABA). The mRNA levels of ThTrxl in both leaves and roots were up-regulated under NaCl, PEG, CdCl_2 and ABA treatments. However, the expression of ThTrx1 mRNA decreased during low temperature treatment. We also expressed the ThTrx1 gene in E. coli and examined its effect on bacterial growth and stress tolerance. The E. coli containing recombinant plasmid(pET32a-Trx1 ) was more resistant to salt, metal ions and drought stress that was the control. Therefore, ThTrxl is involved in an abiotic stress response and regulated by ABA-dependent signaling pathways.
出处 《植物研究》 CAS CSCD 北大核心 2015年第3期340-346,354,共8页 Bulletin of Botanical Research
基金 National Science and Technology Program of China during the 12th Five-Year Plan Period(Grant No.2013AA102704)
关键词 硫氧还蛋白 基因表达 非生物胁迫应答 刚毛柽柳 Thioredoxin h gene expression abiotic stress response Tamarix hisipida
  • 相关文献

参考文献1

二级参考文献36

  • 1Asada, K., 1984. Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol., 105:422-429. [doi: 10.1016/S0076-6879(84)05059-X].
  • 2Balmer, Y., Vensel, W.H., Tanaka, C.K., Hurkman, W.J., Gelhaye, E., Rouhier, N., Jacquot, J.P., Manieri, W., Schtirmann, P., Droux, M., et al., 2004. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. PNAS, 101(8):2642-2647. [doi:10.1073/ pnas.0308583101].
  • 3Boscolo, P.R.S., Menossi, M., Jorge, R.A., 2003. Aluminuminduced oxidative stress in maize. Phytochemistry, 62(2): 181-189. [doi:10.1016/S0031-9422(02)00491-0].
  • 4Bradford, M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem,72(1-2):248-254. [doi: 10.1016/0003-2697(76)90527-3].
  • 5Broin, M., Rey, P., 2003. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit over-oxidation of the BAS1 2-Cys peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol., 132(3): 1335- 1343. [doi: 10.1104/pp. 103.021626].
  • 6Cakmak, I., Horst, W.J., 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxides activities in root tips of soybean (Gl.vcine max). Physiol. Plantarum, 83(3):463-468. [doi: 10.1034/j.1399-3054.1991.830320.x].
  • 7Delisle, G., Champoux, M., Houde, M., 2001. Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol., 42(3):324-333. [doi:10. 1093/pcp/pce0411.
  • 8Ellman, 1959.Tissue G.D., sulfllydryl groups. Arch. Biochem. Biophys., 82(1):70-77. [doi:10.1016/0003-9861(59)90090-6].
  • 9Goodwin, S.B., Sutter, T.R., 2009. Microarray analysis of Arabidopsis genome response to aluminum stress. Biol. Plantarum, 53(1):85-99. [doi:10.1007/s10535-009-0012-4].
  • 10Jung, B.G., Lee, K.O., Lee, S.S., Chi, Y.H., Jang, H.H., Kang, S.S., Lee, K., Lim, D., Yoon, S.H., Yun, D.J., et al., 2002. A Chinese cabbage eDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J. Biol. Chem., 277(15):12572-12578. [doi:10.1074/jbc.M110791200].

共引文献1

同被引文献40

  • 1李巧云,牛洪斌,王新国,任江萍,李永春,尹钧.Trxs过量表达对大麦成熟种子生理生化活性及蛋白组分的影响[J].麦类作物学报,2010,30(3):535-538. 被引量:1
  • 2刘雷,尹钧.硫氧还蛋白基因对大麦发芽特性的影响[J].作物学报,2005,31(12):1562-1566. 被引量:8
  • 3Tester M, Davenport R. Na tolerance and Na transport in higher plants [ J ]. Annals of Botany, 2003,91 (5) : 503 - 527.
  • 4Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells [ J ]. Bioehim Biophys Aeta, 2000,1465 ( 1 - 2) : 140 - 151.
  • 5Ratner A, Jacoby B. Effect of K + , its counter anion, and pH on sodium efflux from Barley roots [ J ]. Exp Physiol, 1976,148:425 - 433.
  • 6Blumwald E, Poole R. Na +/H + antiport in isolated tono- plast vesicles from storage tissue of Beta vulgaris[ JJ. Plant Physiol, 1985,78 ( 1 ) : 163 - 167.
  • 7Apse M, Aharon G, Snedden W, et al. Salt tolerance con- ferred by overexpression of a vacuolar Na +/H+ antiporter in Arabidopsis [ J ]. Science, 1999 (285) : 1256 - 1258.
  • 8Martinez-Atienza J1, Jiang X, Garciadeblas B, et al. Con- servation of the salt overly sensitive pathway in rice [ J ]. Plant Physio1,2007,143 (2) : 1001 - 12.
  • 9Zhang H, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[ J]. Nature Biotechnology ,2001,19:765 - 768.
  • 10Zhang H X, Hodson J N, Williams J P, et al. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation [ J ]. Proc Natl Acad Sci, 2001,98 : 12832 - 12836.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部