摘要
在逻辑函数布尔c-导数的基础上,引入了布尔c-偏导数的概念.为了简化布尔c-导数及其c-偏导数的计算,提出了基于逻辑函数最小项表的计算方法.该算法用最小项表列出1值最小项的二进制代码,然后对二进制代码中相应位取反变换产生新的最小项,再进行比较并删除新最小项中的重复项来计算c-导数和c-偏导数.实例展示了利用最小项表的计算过程.与代数法和图形法相比,该算法简单有效,当变量数较多时易于计算机编程实现.
Based on the c-derivative of Boolean functions, the definition of Boolean c-partial derivative is introduced. Then the minterm tabular method calculating Boolean c-derivative and c-partial derivative is proposed in order to simplify their computing procedure. A few examples of calculating Boolean c-derivative and c-partial derivatives by using tabular method are given and their computational effectiveness of the proposed method is illustrated. Compared with the existed algebraic and graphic methods, the proposed tabular method is not only simple and convenient, but also suitable for computer programming to solve the c-derivative and c^partial derivative when a function is with more variables.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2015年第3期303-305,309,共4页
Journal of Zhejiang University(Science Edition)
基金
浙江省自然科学基金资助项目(Y1110808)
关键词
布尔c-导数
布尔c-偏导数
最小项表
故障检测
密码学
Boolean c-derivative
Boolean c-partial derivative
minterm tabular
fault detection
cryptography