摘要
The logarithms of retention factors normalized to a hypothetical pure water eluent(log k w) were determined on a reversed phase high performance liquid chromatography(RP HPLC) column (Li Chrosorb RP 18 column) for 20 new α\|branched phenylsulfonyl acetates. The atomic charge method was applied to develop quantitative structure retention relationships(QSRRs). Among the available geometric and electronic descriptors, surface area (S), ovality (O), and the charge of carboxyl group(Q OC ) are significant. In the model, the contribution of surface area (S) is the greatest. The molecular mechanism of retention was demonstrated through the model. With the correlation coefficient ( r 2 adj , adjusted for degrees of freedom) of 0.964, the standard error of 0.164 and the F value of 170.39, the model has good predictive capacity.
The logarithms of retention factors normalized to a hypothetical pure water eluent(log k w) were determined on a reversed phase high performance liquid chromatography(RP HPLC) column (Li Chrosorb RP 18 column) for 20 new α\|branched phenylsulfonyl acetates. The atomic charge method was applied to develop quantitative structure retention relationships(QSRRs). Among the available geometric and electronic descriptors, surface area (S), ovality (O), and the charge of carboxyl group(Q OC ) are significant. In the model, the contribution of surface area (S) is the greatest. The molecular mechanism of retention was demonstrated through the model. With the correlation coefficient ( r 2 adj , adjusted for degrees of freedom) of 0.964, the standard error of 0.164 and the F value of 170.39, the model has good predictive capacity.
基金
TheNationalNaturalScienceFoundationofChina (No .2 9837180 )