期刊文献+

一种解决不平衡情感分类的EM改进算法 被引量:2

An Improved Algorithm of EM for Unbalanced Sentiment Classification
下载PDF
导出
摘要 基于朴素贝叶斯模型的EM算法经常被应用到情感分类中,但是其存在自身的缺点,当训练样本的类别不平衡时,分类器会越来越偏向于某一类,导致结果变差。本文在EM算法的基础上提出了一种改进的算法,来解决这一问题,并且通过实验我们可以发现该算法要优于普通的EM算法,证明了该算法的有效性以及合理性。 EM algorithm based on naive bayesian model is often applied to the sentiment classification,but it has shortcomings.When the training sample categories are unbalanced,The classifier will be more and more tend to a certain category,which will lead to worse results.In this paper,on the basis of the EM algorithm an improved algorithm is proposed to solve this problem.And through the experiment we can find that the proposed algorithm is superior to ordinary EM algorithm.The experiment proves the validity and rationality of our algorithm.
出处 《电子测试》 2015年第3期49-51,共3页 Electronic Test
关键词 情感分类 不平衡样本 CNBEM sentiment classification unbalanced samples CNBEM
  • 相关文献

参考文献7

  • 1B Pang, L Lee. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2) :1-135, 2008.
  • 2B. Liu. Sentiment Analysis and Opinion Mining. Morgan & Claypool, 2012.
  • 3P Turney. Thumbs up or thumbs down?Semantic orientation applied to unsupervisedclassification of reviews. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pp. 417-424. 2002.
  • 4B Pang, L Lee, S Vaithyanathan. Thumbs up? Sentiment Classification using Machine Learning Techniques, In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2002, pp. 79-86.
  • 5Duda, R.O.,& Hart, P.E. (1973).Pattern classificationand scene analysis. Wiley and Sons, Inc.
  • 6Domingos, P.,& Pazzani,M. (1996).Beyond independence:conditions for the optimality of the simpleBayesian classifier. Proceedings of ICML '96.
  • 7McCallum, A.,& Nigam, K. (1998).A comparison of eventmodels for naive Bayes text classification. Proceedingsof AAAI ' 98.

同被引文献13

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部