摘要
本文考虑了极点在闭左半平面的高阶连续多智能体系统的趋同问题.假设网络拓扑为有向图,且个体从邻居收到的信息存在通信时滞,分别得到与时滞无关和与时滞有关的两种趋同条件,这两个条件充分揭示了智能体结构、通信时滞和网络拓扑三者之间的关系.本文的核心方法是利用参数化代数Riccati方程的唯一正定解来设计趋同增益.此外,文中说明了通信时滞在有些情况下可为时变的.最后,数值例子验证了所得理论结果的有效性.
This paper is concerned with the consensus problem for higher-order multi-agent systems that are at most critically unstable. Under the assumption that the topology is directed and every agent receives neighbors' information with an unknown communication delay, we obtain both the delay-independent condition and the delay-dependent condition for consensus, which reveal the relations among the agent dynamics, communication delay and network topology. The key technique is designing the consensus gain based on the unique definite solution of a parametric algebraic Riccati equation. In addition, it is shown that the communication delay can be time-varying in some cases. The effectiveness of the theoretical results is demonstrated through numerical examples.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2015年第3期295-303,共9页
Control Theory & Applications
基金
泰山学者岗位建设工程项目(JS200510009)
国家自然科学基金项目(61120106011
61203029
61034007)资助~~
关键词
多智能体系统
趋同协议
通信时滞
网络拓扑
multi-agent systems
consensus protocol
communication delay
network topology