期刊文献+

未知观测噪声时机器人同步定位与地图构建 被引量:3

Robot simultaneous localization and mapping with unknown observation noise
下载PDF
导出
摘要 对未知观测噪声的机器人同步定位与地图构建问题,提出基于神经网络PID自适应学习观测噪声的机器人同步定位与地图构建算法.已知系统噪声为高斯分布,噪声的方差未知,但其真值是在某个有限集合内.设计一个由神经网络PID控制器、观测噪声调整以及中值滤波构成的噪声在线辨识单元.通过自适应在线辨识观测噪声,并进行新息协方差平均值滤波,迭代修正观测噪声协方差,实现机器人同步定位精度的在线提高.实验表明,该算法可降低观测噪声先验信息不足的影响,减小定位误差. To deal with the unknown observation noise for a robot in simultaneous localization and mapping (SLAM), we propose an adaptive learning observation noise algorithm based on neural network PID for robot SLAM (ALON-SLAM). In this algorithm, the system noise is with Gaussian distribution and the noise variance is unknown, but the true values of the noise are within a finite set. An online noise identification structure consisting of neural network PID controller, observation noise adjustor and median filter is developed. The observation noise covariance is adaptively learned online. Meanwhile, the innovation covariance is used to match the observation noise covariance and to iteratively revise it. Then, the estimation accuracy of the robot position is improved online. Experimental results show that this algorithm reduces the impact of the observation noise without prior knowledge, and lowers the positioning error.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第3期320-325,共6页 Control Theory & Applications
基金 国家自然科学基金项目(51275405) 陕西省教育厅自然科学专项项目(2013JK1078) 陕西省重点科技创新团队(2013KCT–04)资助~~
关键词 未知观测噪声 机器人 同步定位与地图构建 神经网络 unknown observation noise robot simultaneous localization and mapping neural network
  • 相关文献

参考文献22

  • 1KIM A, EUSTICE R M. Real-time visual SLAM for autonomous un- derwater hull inspection using visual saliency [J]. 1EEE Transactions on Robotics, 2013, 29(3): 719 - 733.
  • 2JULIER S J, UHLMANN J K. Stability of hybrid systems [C]//IEEE International Conference on Robotics and Automation. New York: IEEE, 2001, 4:4238 - 4243.
  • 3LEE C S, CLARK C D E, SALVI J. SLAM with dynamic targets via single-cluster PHD filtering [J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 543 - 552.
  • 4SMITH R, CHESSEMAN P M. Estimating uncertain spatial relation- ships in robotics [J]. IUlncertainty in Artificial Intelligence,1988, 2: 435 - 461.
  • 5ZOU D P, TAN P. Collaborative visual SLAM in dynamic environ- ments [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2013, 35(2): 354 - 366.
  • 6ALSPACH D, SORENSON H. onlinear Bayesian estimation using Gaussian sum approximations [J]. IEEE Transactions on Automatic Control, 1972, 17(4): 439 - 448.
  • 7DJUGASH J, SINGH S, KANTOR G, et al. Range-only SLAM for robots operating cooperatively with sensor networks [C] IlIEEE Inter- national Conference on Robotics and Automation. Washington, DC, USA: IEEE, 2006:2078 - 2084.
  • 8BOSSE M, NEWMAN P, LEONARD J, et al. Simultaneous localiza- tion and map building in large-scale cyclic environments using the At- las framework [J]. International Journal of Robotics Research, 2004, 23(12): 1113 - 1140.
  • 9MEHRA R K. On the identification of varinaces and adaptive Kalman filtering [J]. IEEE Transactions on Automatic Control, 1970, 15(2): 175 - 184.
  • 10FIGZERALD R J. Divergence of the Kalman filter [J]. IEEE Trans- action on Automatic Control, 1971, 16(6): 165 - 176.

同被引文献12

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部