期刊文献+

基于混合整数规划的一般Petri网死锁检测方法 被引量:5

Deadlock detection method using mixed integer programming for generalized Petri nets
下载PDF
导出
摘要 信标的受控性是检测柔性制造系统(flexible manufacturing system,FMS)Petri网模型是否存在死锁的关键因素.对于普通Petri网,在任何可达标识下所有信标不被清空是检测网系统非死锁的充分条件.然而,该条件对于建模能力更强的一般Petri网并不适用,max可控性条件由此产生.研究证明,该条件对于一般Petri网的死锁检测过于严格了.虽然其后有很多研究者通过改进max可控性条件以求给出条件更宽松的一般Petri网非死锁的充分条件,但大部分的研究成果都仅仅局限于一种顺序资源共享分配系统Petri网模型S4PR(systems of sequential systems with shared resources)网.因此,本文在max可控性条件的基础上提出了新的名为max#可控的信标可控性条件,并在此条件的基础上实现了基于混合整数规划(mixed integer programming,MIP)的死锁检测方法.与现有研究成果相比,max#可控性条件更宽松,可适用于更多类型的一般网,为解决大规模柔性制造系统中死锁监督控制器的结构复杂性问题提供了有力的理论支撑. The controllability of siphon is the key factor in detecting deadlocks which occur in the flexible manufacturing system based on Petri nets. The sufficient condition for deadlock-free detection of ordinary petri nets is that all siphons are not emptied. However, this Condition can not be applied to general ones. Therefore, a condition named max-controlled for deadlock detection of generalized petri nets is proposed. In recent years, some conditions have been developed to try to obtain the general sufficient one because the max-controlled condition has been proved to be overly restrictive, but most of them are only applicable for SapR (systems of sequential systems with shared resources) net. In this paper, a new condition named max#-controlled is introduced and the deadlock detection method based on MIP (mixed integer programming) is presented. Compared with previous conditions, the new one is more general to generalized petri nets and it can be a theoretical support for dealing with the structural complexity problems of liveness- enforcing supervisor in large scale of flexible manufacturing systems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第3期374-379,共6页 Control Theory & Applications
基金 国家自然科学基金项目(61374022 61472361 61100056) 浙江省杰出青年基金项目(LR14F020001)资助~~
关键词 PETRI网 柔性制造系统 死锁检测 混合整数规划 Petri net flexible manufacturing system (FMS) deadlock detection mixed integer programming (MIP)
  • 相关文献

参考文献18

  • 1LI Z W, ZHOU M C. Deadlock Resolution in Automated Manufactur- ing Systems: A Novel Petri Net Approach [M]. New York: Springer, 2009.
  • 2WANG S G, WANG C Y, ZHOU M C. Controllability conditions of resultant siphons in a class of Petri nets [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42(5): 1206- 1215.
  • 3LI Z W, LIU G Y, HANISCH H, et al. Deadlock prevention based on structure reuse of Petri net supervisors for flexible manufacturing systems [J]. IEEE Transactions on Systems, Man and Cybernetics, PartA: Systems andHumans, 2012, 42(1): 178 - 191.
  • 4EZPELETA J, COLOM J M, MARTINEZ J. A Petri net based dead- lock prevention policy for flexible manufacturing systems [J]. IEEE Transactions on Robotics and Automation, 1995, 11(2): 173 - 184.
  • 5CHU F, XIE X L. Deadlock analysis of Petri nets using siphons and mathematical programming [J]. IEEE Transactions on Robotics and Automation, 1997, 13(6): 793 - 804.
  • 6HUANG Y S, JENG M D, XIE X L, et al. Deadlock prevention pol- icy based on Petri nets and siphons [J]. Internal Journal of Production Research, 2001, 39(2): 283 - 305.
  • 7WANG S G, WANG C Y, ZHOU M C, et al. A method to compute strict minimal siphons in a class of PeWi nets based on loop resource subsets [J]. IEEE Transactions on Systems, Man and Cybernetics, PartA: Systems andHumans, 2012, 42(1): 226- 237.
  • 8BARKAOUI K, PRADAT-PEYRE J E On liveness and controlled siphons in Petri nets [C]//Proceedings of the 17th International Con- ference on Applications and Theory of Petri Nets. Japan: IEEE, 1996, 1091:57 - 72.
  • 9徐姗姗,董利达,朱丹,朱承丞.一类活性Petri网控制器的冗余检测及结构简化[J].控制理论与应用,2013,30(6):673-682. 被引量:8
  • 10CHAO D Y. Max'-controlled siphons for liveness of SapGR2 [J]. IET Control Theory and Applications, 2007, 1(4): 933 - 936.

二级参考文献50

  • 1赵咪,李志武.一类离散事件系统的非阻塞监督控制器设计[J].西安电子科技大学学报,2006,33(5):735-738. 被引量:4
  • 2胡核算,李志武,王安荣.基于信标的柔性制造系统的优化死锁预防策略[J].控制与决策,2006,21(12):1343-1348. 被引量:6
  • 3Barkaoui K, Abdallah I B. An efficient deadlock avoidance control policy in FMS using structural analysis of Petri nets. In: Proceedings of IEEE International Conference on Systems, Man, Cybernetics. San Antonio, USA: IEEE, 1994. 525-530.
  • 4Xing K Y, Hu B S, Chen H X. Deadlock avoidance policy for Petri-net modeling of flexible manufacturing systems with shared resources. IEEE Transactions on Automatic Control, 1996, 41(2): 289-295.
  • 5Park J, Reveliotis S A. Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic Control, 2001, 46(10): 1572-1583.
  • 6Zouari B, Barkaoui K. Parameterized supervisor synthesis for a modular class of discrete event system. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA: IEEE, 2003. 1874-1879.
  • 7Barkaoui K, Pradat-Peyre J F. On liveness and controlled siphons in Petri nets. In: Proceedings of International Conference on Application and Theory of Petri Nets Osaka, Japan: Springer, 1996. 57-72.
  • 8Li Z W, Zhou M C. Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2004, 34(1): 38-51.
  • 9Ezpeleta J, Colom J M, Martinez J. A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, 1995, 11(2): 173-184.
  • 10Li Z W, Zhou M C. Control of elementary and dependent siphons of Petri nets and their application. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Human, 2008, 38(1): 133-148.

共引文献11

同被引文献47

  • 1唐培和.Petri网死锁的分析与检测[J].计算机系统应用,2004,13(11):44-47. 被引量:8
  • 2NALEPKA J, HINCHMAN J. Automated aerial refueling: extending the effectiveness of unmanned air vehicles [C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. California: AIAA, 2005:1 - 8.
  • 3STEPHENSON J. The Air Refueling Receiver That Does Not Com- plain [M]. Alabama: Air University Press, 1999:20 - 28.
  • 4BURNS B. Autonomous unmanned aerial vehicle rendezvous for au- tomated aerial refueling [D]. Ohio: Air University, 2007.
  • 5BURNS B, BLUE P, ZOLLARS M. Autonomous control for auto- mated aerial refueling with minimum-time rendezvous [C] //AIAA Guidance, Navigation and Control Conference. California: AIAA, 2007:1 - 19.
  • 6OWEN M, NICHOLS J, COLTON M. Cooperative aerial tracking and rendezvous along time-optimal 3-dimensional curves [C] //A- IAA Guidance, Navigation, and Control Conference. Oregon: AIAA, 2011:1 - 14.
  • 7WILSON D, SOTO T, GOKTOGAN A, et al. Real-time rendezvous point selection for a nonholonomic vehicle [C]//IEEE Internation- al Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 3941 - 3946.
  • 8BENO V, ADAMCIK JR F. Unmanned combat air vehicle: Mq-9 reaper [C]//International Conference of Scientific Research & Edu- cation. Brasov: AFASES, 2014.
  • 9WOLSEY L. Integer Programming [M]. New York: Wiley, 1998:91 - 108.
  • 10DUBINS L. On curves of minimal length with a constraint on aver- age curvature, and with prescribed initial and terminal positions and tangents [J]. American Journal of Mathematics, 1957, 79(3): 497 - 516.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部