期刊文献+

LC振荡型忆阻混沌电路及时滞反馈控制 被引量:3

LC oscillation of memristor chaotic circuit and its time-delay feedback control
下载PDF
导出
摘要 将磁控忆阻器耦合于LC振荡电路中,得到了一种新的忆阻混沌电路.随后通过理论上的动力学分析、数值仿真、电路实验等验证了该电路的混沌特性.为了实现电路的混沌控制,设计了一种新型模拟时滞控制器.利用该控制器将混沌电路状态变量加以延时并反馈至原电路中.数值仿真和电路实验结果均表明,所设计的时滞控制器可实现混沌电路的镇定控制.进一步研究时滞控制下电路的分岔行为,发现时滞控制下的电路又可通过倍周期分岔进入超混沌. In this work, a new kind of memristor chaotic circuit is developed when the flux-controlled memristor is coupled to the LC oscillator. The chaotic characteristics of the circuit can be verified by the dynamic analysis, numerical simulations and circuit experiments. Furthermore, in order to control the proposed chaotic circuit, a new type of analog time-delay feedback control circuit is designed. The controller is used to realize the time delay in the state variables of the chaotic circuit, and feedback the resultant state variables to the original circuit. The results from the numerical simulation and the circuit experiment show that the proposed time-delay feedback controller can realize the stabilization control for the chaotic circuit. Finally, the bifurcation behavior of the circuit under the time-delay control is studied; results show that this circuit exhibits hyper chaos from double periodicity bifurcation with time-delay control.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第3期398-412,共15页 Control Theory & Applications
基金 国家自然科学基金项目(61233010 61176032) 湖南省研究生科研创新基金项目(CX2014B261)资助~~
关键词 混沌电路 忆阻器 混沌控制 时滞电路 电路实验 chaotic circuit memristor chaos control time-delay circuit circuit experiment
  • 相关文献

参考文献22

  • 1XIE L, SOUZA C E, FU M. H estimation for discrete-time linear uncertain systems [J]. International Journal of Robust and Nonlinear Control, 1991, 1(2): 11 - 23.
  • 2PALHARES R M, PERES P L. Robust I-I filtering design with pole placement constraint via linear matrix inequalities [J]. Journal of Op- timization Theory and Applications, 1999, 102(2): 239 - 261.
  • 3LI H, FU M. A linear matrix inequality approach to robust I-I flter- ing [J]. IEEE Transaction on Signal Processing, 1997, 45(9): 2338 - 2350.
  • 4XU S Y, CHEN T. Reduced-order I-I filtering for stochastic sys- tems [J]. IEEE Transactions on Signal Processing, 2002, 50(8): 2998 - 3007.
  • 5FENG X B, LOPARO K A, JI Y D, et al. Stochastic stability prop- erties of jump linear systems [J]. IEEE Transactions on Automatic Control, 1992, 37(1): 38 - 53.
  • 6DUB Z, LAM J, ZOU Y. Stability and stabilization for Markovian jump time-delay systems with partially unknown transition rates [J]. IEEE Transactions on Circuits and Systems 1: Regular Papers, 2013, 60(2): 341 - 351.
  • 7COSTA O L V, FRAGOSO M D, MARQUES R E Discrete Time Markov Jump Linear Systems [M]. London: Springer, 2005.
  • 8ZHANG L X, BOUKAS E K. Stability and stabilization of Marko- vian jump linear systems with partly unknown transition probabilities [J]. Automatica, 2009, 45(2): 463 - 468.
  • 9LUAN X L, ZHAO S Y, LIU E H control for discrete-time Markov jump systems with uncertain transition probabilities [J]. IEEE Trans- actions on Automatic Control, 2013, 58(6): 1566- 1572.
  • 10SHI E BOUKAS E K. Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters [J]. IEEE Transactions on Automatic Control, 1999, 44(8): 1592 - 1597.

同被引文献26

  • 1CHUA L 0. Memresistor-the missing circuit element[ J]. IEEE Transact Circuit Theory, 1971,18(5) :507-519.
  • 2STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memresistor found[ J] . Nature,2008 , 453 : 80-83.
  • 3WILLIAMS R S. How we found the missing memresistor[ J]. IEEE Spectr, 2008 , 45(12) : 28-35.
  • 4WANG X Y,FITCH A L,IU H H C,et al. Design of a memcapacitor emulator based on a memresistor[ J]. Phys Lett A,2012,376(4) : 394-399.
  • 5VALSA J, BIOLEK D, BIOLEK Z. An analogue model of the memresistor[ J]. Intemat J Numer Model: Eelectr Netw, De-vic Field, 2010,24(4) : 400-408.
  • 6CHUA L 0,KANG S M. Memresistive devices and systems[ J]. Proceed IEEE, 1976,64(2) :209-223.
  • 7JOGLEKAR Y N, WOLF S J. The elusive memresistor; properties of basic electrical circuits[ J]. Europ J Phys, 2009,30(4):661-675.
  • 8CHUA L 0,WU C W, HUANG A S,et al. A universal circuit for studying and generating chaos. 1. routes to chaos[ J].Fundam Theory Appl, 1993,40( 10) : 732-744.
  • 9张若洵,田钢,栗苹,杨世平.一类参数不确定混沌系统的自适应同步[J].物理学报,2008,57(4):2073-2080. 被引量:30
  • 10包伯成,刘中,许建平.忆阻混沌振荡器的动力学分析[J].物理学报,2010,59(6):3785-3793. 被引量:35

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部