期刊文献+

关于Diophantine方程px+(p+2)~y=z^2的一个注记(英文) 被引量:1

A note on the Diophantine equation px+(p+2)~y=z^2
下载PDF
导出
摘要 设p是一个固定的奇素数.为了得到方程px+(p+2)y=z2的解,利用指数Diophantine方程和二次剩余的性质证明了当2y时,方程px+(p+2)y=z2无解(x,y,z);此外,如果p≡±3(mod 8)或p≠7,并且p+2是一个平方数,那么,方程也无解(x,y,z). Let pbe a fixed odd prime.In order to get the solutions of equation px+(p+2)y=z2,by using the properties of exponential Diophantine equation and quadratic residue,it is proved that equation px+(p+2)y=z2 has no solution(x,y,z)with 2y.In addition,if either p≡±3(mod 8)or p≠7and p+2is a square,then the equation also has no positive integer solution(x,y,z).
作者 张瑾
出处 《西安工程大学学报》 CAS 2015年第2期235-238,共4页 Journal of Xi’an Polytechnic University
基金 supported by the N.S.F.of P.R.China(11371291) S.R.P.F.of Shaanxi Provincial Education Department(2013JK0573)
关键词 指数DIOPHANTINE方程 高次DIOPHANTINE方程 二次剩余 exponential Diophantine equation higher Diophantine equation quadratic residue
  • 相关文献

参考文献16

  • 1SROYSANG B.On the Diophantine equation 3x+5y=z22[J].International Journal of Pure and Applied Mathematics,2012,81(4):605-608.
  • 2SROYSANG B.On the Diophantine equation 47x+49y=z22[J].International Journal of Pure and Applied Mathematics,2013,89(2):279-282.
  • 3SROYSANG B.On the Diophantine equation 89x+91y=z22[J].International Journal of Pure and Applied Mathematics,2013,89(2):283-286.
  • 4SROYSANG B.On the Diophantine equation 131x+133y=z22[J].International Journal of Pure and Applied Mathematics,2014,90(1):65-68.
  • 5NAGELL T.Sur Fimpossibilité de quelques equations à deux indéterminées[J].Norsk Mat Forenings Skr,1921,13(1):65-82.
  • 6HUA L K.Introduction to number theory[M].Beijing:Science Press,1979.
  • 7郑亚妮.Diophantine方程x^2-ty^2=1和y^2-Dz^2=4的可解性(英文)[J].纺织高校基础科学学报,2014,27(4):424-427. 被引量:2
  • 8LU Yulin,LI Xiaoxue.A note on the equation xy+yz=zx[J].Journal of Inequalities and Applications,2014,2014:170.
  • 9李玲,李小雪.Diophantine方程p^x+q^y=z^2(英文)[J].纺织高校基础科学学报,2015,28(1):42-44. 被引量:4
  • 10CHOTCHAISTHIT S.On the Diophantine equation 2x+11y=z22[J].Maejo International Journal of Science and Technology,2013,7(2):291-293.

二级参考文献19

  • 1SROYSANG B. On the Diphantine equation 7x+31y=x2[J]. Int J Pure Appl Math,2014,92(1) :109-112.
  • 2SROYSANG B. On two Diophantine equations 7x+ 19y = x2 and 7x+ 91y = x2 [J]. Int J Pure Appl Math, 2014,92 (1) : 113-116.
  • 3BIRKHOFF G D,VANDIVER H S. On the integral divisors of an-bn[J]. Ann Math,1904,5 (2).173-180.
  • 4BUGEAUD Y, MIGNOTTE M. On integers with identical digits[J]. Mathematika, 1999,46(2) :411-417.
  • 5APOSTOL T M. Introduction to analytic number theory[M]. New York:Springer-Verlag, 1976:106-125.
  • 6CIPU M, MIGNOTTE M. On a conjecture on exponential Diophantine equations[J]. Acta Arith, 2009,140 (3): 251-270.
  • 7LUCA F. On the system of Diophantine equations a2+ b2= (m2+1)r and ax+b2=(m2+1)x[J]. Acta Arith, 2012,153 (4) ..373-392.
  • 8MIYAZAKI T,TOGBE A. The Diophantine equation (2am-1)x+ (2m)y = (2am+ 1)x [J]. Int J Number Theory, 2012,8 (8) .. 2035-2044.
  • 9TERAI N. A note on the Diophantine equation x2 + qm = cn [J]. Bulletin of the Australian Mathematical Society, 2014, 90(1) :20-27.
  • 10MORDELL L J. Diophantine equations[M]. London: Academic Press, 1969 : 272-276.

共引文献5

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部