摘要
设p是一个固定的奇素数.为了得到方程px+(p+2)y=z2的解,利用指数Diophantine方程和二次剩余的性质证明了当2y时,方程px+(p+2)y=z2无解(x,y,z);此外,如果p≡±3(mod 8)或p≠7,并且p+2是一个平方数,那么,方程也无解(x,y,z).
Let pbe a fixed odd prime.In order to get the solutions of equation px+(p+2)y=z2,by using the properties of exponential Diophantine equation and quadratic residue,it is proved that equation px+(p+2)y=z2 has no solution(x,y,z)with 2y.In addition,if either p≡±3(mod 8)or p≠7and p+2is a square,then the equation also has no positive integer solution(x,y,z).
出处
《西安工程大学学报》
CAS
2015年第2期235-238,共4页
Journal of Xi’an Polytechnic University
基金
supported by the N.S.F.of P.R.China(11371291)
S.R.P.F.of Shaanxi Provincial Education Department(2013JK0573)