期刊文献+

武器效能衍生推理及评估模型自学习的研究实现 被引量:1

Derivative Reasoning of Weapon Effectiveness and Self-learning of Evaluation Model
下载PDF
导出
摘要 针对海洋环境下武器作战效能的评估问题,在样本数据极度匮乏的情况下,提出了一种武器效能衍生推理机制。利用与待评估武器具有较高相似度的一种或多种其它武器型号的样本数据,训练通用评估模型得到针对该武器的专用评估模型。为提高评估模型的可信度,专用评估模型增加了自学习功能。随着武器样本数据更新变化到一定阈值,对模型进行重新训练以完成专用模型的自学习修正。最后在某作战平台效能评估系统上进行实例验证并完成模型自学习功能设计。事实表明衍生推理能提供较高参考价值,并且通过模型自学习,效能评估的可信度和准确性有很大提高。 Aiming at the operationaI effectiveness evaIuation probIem of weapon equipment under the marine environment,this pa-per proposes a derivative reasoning mechanism of weapon operationaI effectiveness in the condition of extreme scarcity in the sampIe data.Using sampIe data of one or more other types of weapons having a high simiIarity with the weapon to be evaIuated,a common evaIuation modeI can be trained to get speciaI evaIuation modeI for the weapon.To improve the reIia-biIity of evaIuation modeI,the function of seIf-Iearning is added to speciaI evaIuation modeI.With sampIes changing to a cer-tain threshoId,the seIf-Iearning revision of speciaI evaIuation modeI can be compIeted by modeI retraining.
出处 《工业控制计算机》 2015年第4期101-103,共3页 Industrial Control Computer
基金 国家自然科学基金重点资助项目(60934008) 中央高校基本科研业务费专项基金资助(2242014K10031)
关键词 衍生推理 相似武器 专用评估模型 自学习 derivative reasoning simiIar weapons speciaI evaIuation modeI seIf-Iearning
  • 相关文献

参考文献5

二级参考文献27

  • 1周燕,陈中,李为民.基于BP神经网络的弹炮结合系统作战效能评估[J].系统工程与电子技术,2005,27(1):84-86. 被引量:33
  • 2许兆新,吴传利,殷志伟.美国海军海洋环境信息应用系统综述[J].舰船电子工程,2005,25(4):25-29. 被引量:11
  • 3石松芳,宋建萍.专家系统中知识库维护的若干问题[J].湖北教育学院学报,2006,23(8):24-26. 被引量:5
  • 4McLaughlin J W, Henderson S. Applying GLOBE measure- ments and resources to the study of marine environments[ J ]. Oceans,2005 ( 3 ) :2621-2624.
  • 5SchSlkopf B, Smola A J, Williamson R C, et al. New Support Vector Algorithms [ J ]. Neural Computation, 2000, 12 ( 5 ) : 1207-1245.
  • 6Chang C C, Lin C J. LIBSVM : A library for support vector ma- chines [J]. ACM Transactions on Intelligent Systems and Technology, 2011,2 ( 3 ) : 27 -27.
  • 7Flake G M, Lawrence S. Efficient SVM Regression Training with SMO [ J ]. Machine Learning,2002,46 ( 1-3 ) :271-290.
  • 8Chang C C, Lin C J. Training v-Support Vector Regression: Theory and Algorithms [ J ]. Neural Computation, 2002, 14 (8) : 1959-1977.
  • 9Chen P H, Fan R E, Lin C J. A study on SMO-type decompo- sition methods for support vector machines [ J ]. Neural Net- works,2006,17 (4) : 893 -908.
  • 10McLaughlin J W,Henderson S. Applying GLOBE measure-ments and resources to the study of marine environments[A].2005.2621-2624.

共引文献13

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部