期刊文献+

基于混合主题模型的文本蕴涵识别 被引量:2

Textual Entailment Recognition Based on Mixed Topic Model
下载PDF
导出
摘要 分析识别文本蕴涵的主流方法,并基于文本T和假设H可以从潜在混合主题中生成的猜想,提出一个混合主题模型来识别文本蕴涵,描述一个在混合主题模型上生成文本的概率模型。该模型把文本T和假设H看成是同一语义的不同表达,表示为多模式的数据,若文本T和假设H有蕴涵关系,则它们有相似的主题分布,共享混合词汇表和主题。设计mix LDA和LDA模型的对比实验,并对RTE-8任务进行测试,通过支持向量机对得到的句子相似度和其他词法句法特征进行分类。实验结果表明,基于混合主题模型的文本蕴涵识别具有较高的准确率。 This paper analyses the main method of recognizing textual entailment,and proposes a method named mixed topic model to recognize textual entailment, and describes a probabilistic model based on the assumption. Texts are generated by mixtures of latent topics. It takes the T( Text) and H( Hypothesis) as a different expression of the same semantic mean. These can be represented as multi mode data. If text entails hypothesis,they have the similar probability distribution of the topic,shares the same mixed bag of words and topics. The model is used in the task RTE-8,parallel tests of mixLDA and LDA models are designed,and a system experiment uses the Support Vector Machine( SVM) to classify the features which consist of the textual similarity made by this model and other features. Experimental result demonstrates the high accuracy of the mixed topic model to recognize textual entailment.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期180-184,共5页 Computer Engineering
基金 国家自然科学基金资助面上项目"汉语文本推理的资源建设和统计分析研究"(61173062)
关键词 文本蕴涵 主题模型 多模式 混合主题 隐藏语义 支持向量机 textual entailment topic model multi mode mixed topic latent semantic Support Vector Machine ( SVM )
  • 相关文献

参考文献17

  • 1Dagan I,Glickman O,Magnini B.The PASCAL Recognising Textual Entailment Challenge[C]//Proceedings of the 1st PASCAL Machine Learning Challenges Workshop.Berlin,Germany:Springer,2006:177-190.
  • 2袁毓林,王明华.文本蕴涵的推理模型与识别模型[J].中文信息学报,2010,24(2):3-13. 被引量:17
  • 3张鹏,李国臣,李茹,刘海静,石向荣,Collin Baker.基于FrameNet框架关系的文本蕴含识别[J].中文信息学报,2012,26(2):46-50. 被引量:9
  • 4de Marneffe M C,Rafferty A N,Manning C D.Finding Contradictions in Text[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics.Columbus,USA:Association for Computational Linguistics,2008:1039-1047.
  • 5Malakasiotis P,Androutsopoulos I.Learning Textual Entailment Using SVMs and String Similarity Measures[C]//Proceedings of Workshop on Textual Entailment and Paraphrasing.Stroudsburg,USA:Association for Computational Linguistics,2007:42-47.
  • 6刘茂福,李妍,姬东鸿.基于事件语义特征的中文文本蕴含识别[J].中文信息学报,2013,27(5):129-136. 被引量:11
  • 7石晶,戴国忠.基于知网的文本推理[J].中文信息学报,2006,20(1):76-84. 被引量:8
  • 8Kouylekov M,Magnini B.Recognizing Textual Entailment with Tree Edit Distance Algorithms[C]//Proceedings of the 1st Challenge Workshop on Recognizing Textual Entailment.Washington D.C.,USA:IEEE Press,2005:17-20.
  • 9Kouylekov M,Negri M.An Open-source Package for Recognizing Textual Entailment[C]//Proceedings of the48th Annual Meeting of the Association for Computational Linguistics.Uppsala,Sweden:[s.n.],2010:42-47.
  • 10Lin Dekang,Pantel P.Discovery of Inference Rules for Question-answering[J].Natural Language Engineering,2001,7(4):343-360.

二级参考文献59

  • 1Akhmatova, Elena. Textual Entailment Resolution via Atomic Proposition[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005.
  • 2Andreevskaia, Alina, Zhuoyan Li and Sabine Berger. Can Shallow Predicate Argument Structure Determine Entailment? [C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005 :.
  • 3Bar-Haim, Roy, Idan Szpektor and Oren Gliekman. Definition and Analysis of Intermediate Entailment Levels[C]//Proceeding of the ACL Workshop on Em pirical Modeling of Semantic Equivalence and Entailment. 2005:55-60.
  • 4Barzilay, Regina and Kathleen McKeown (2001) Extracting Paraphrases from a Parallel Corpus[C]// ACL/EACL. 2001 : 50-57.
  • 5Barzilay, Regina and Lillian Lee. Learning to Paraphrase: An Unsupervised Approach Using Multiple- Sequence Alignment[C]//Proceeding of the NAACLHLT. 2003: 16-23.
  • 6Bos, Johan and Katja Markert. Combining Shallow and Deep NLP Methods for Recognizing Textual En tailment[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005.
  • 7Dagan, Ido and Oren Glickman. Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability[C]//PASAL workshop on Learning Meth ods for Text Understanding and Mining, Grenoble France. 2004.
  • 8Dagan, Ido, Oren Glickman, Alfio Gliozzo, Efrat Marmorshtein, Carlo Strapparava. Direct Word Sense Matching for Lexical Substitution[C]//COLING-ACL 06. 2006.
  • 9Dagan, Ido, Oren Glickman and Bernado Magnini. The PASCAL Recognising Textual Entailment Challenge[J]. Lecture Notes in Computer Science, 2006,3944:177-190.
  • 10Glickman, Oren and Ido Dagan. Identifying Lexical Paraphrases from a Single Corpus: A Case Study for Verbs [C]//Proceedings of Recent Advantages in Natural Language Processing. 2003.

共引文献31

同被引文献22

  • 1何娟,高志强,陆青健,瞿裕忠.基于词汇相似度的元素级本体匹配[J].计算机工程,2006,32(16):185-187. 被引量:25
  • 2董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:98
  • 3Androutsopoulos I,Malakasiotis P.A Survey of Paraphrasing and Textual Entailment Methods[J].Journal of Artificial Intelligence Research,2010,38(1):135-187.
  • 4Shnarch E,Dagan I.Lexical Entailment and Its Extraction from Wikipedia[D].Israel,Jaffa:Bar-Ilan University,2008.
  • 5Kouylekov M,Magnini B.Building a Large-scale Repository of Textual Entailment Rules[C]//Pro-ceedings of the5th International Conference on Language Resources and Evaluation.Genoa,Italy:[s.n.],2006:2437-2440.
  • 6Weeds J,Weir D.A General Framework for Distributional Similarity[C]//Proceedings of EMNLP’03.Sapporo,Japan:[s.n.],2003:81-88.
  • 7Weeds J,Weir D,Mc Carthy D.Characterizing Measures of Lexical Distributional Similarity[C]//Proceedings of the20th International Conference on Computational Linguistics).Geneva,Switzerland:[s.n.],2004:1015-1021.
  • 8Lin Dekang.Automatic Retrieval and Clustering of Similar Words[C]//Proceedings of COLING-ACL’98.Montreal,Canada:[s.n.],1998:768-774.
  • 9Szpektor I,Dagan I.Learning Entailment Rules for Unary Templates[C]//Proceedings of the 22nd Inter-national Conference on Computational Linguistics.Manchester,UK:[s.n.],2008:849-856.
  • 10Kotlerman L,Dagan I,Szpektor I,et al.Directional Distributional Similarity for Lexical Inference[J].Natural Language Engineering,2010,16(4):359-389.

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部