期刊文献+

基于显著先验的图像前景分割方法 被引量:1

Image Foreground Segmentation Method Based on Significance Prior
下载PDF
导出
摘要 为研究图像中物体的显著先验信息和外观信息对物体轮廓所造成的影响,提出一种图像前景分割方法。通过将频谱余量获得的显著概率先验与基于码书模型的外观先验结合,在一个概率框架下学习得到统一的图像前景概率分布。对于测试图像,通过基于频谱的显著性计算其不同位置处出现前景的概率,计算基于区域内外观模型为前景的概率,综合得到目标区域为前景的概率,该值超过一定阈值即可认为是前景。该方法仅需要较少量的学习,就能够得到一个近似于真值图像的分割结果。在图像分割标准库上进行测试,结果表明,该方法计算简单,速度快,图像分割效果较好。 In order to study the influence on object contour caused by significance prior information and appearance information in image,this paper presents an image foreground segmentation method. The method is obtained by considering the spectrum based significance probability map and codebook based appearance priori,and puts them into a unified probabilistic framework,the foreground probability distribution is obtained. For the test image, through the spectrum of significance, it calculates the foreground probability at different positions,and the probability of appearance model as foreground inside the region. Synthetically it obtains the probability of the target area for foreground. When exceeds a certain threshold,it can be considered as foreground. This method only needs a small amount of learning,and can get results very similar to true value image segmentation. Experimental results on standard image set show that the method is simple,fast,and effective.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期224-227,共4页 Computer Engineering
关键词 图像分割 显著性 码书模型 频谱显著性 概率模型 外观模型 image segmentation significance codebook model spectrum significance probability model appearance model
  • 相关文献

参考文献12

  • 1韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6):91-94. 被引量:330
  • 2陆军,王润生.一种改进的最小互熵门限法[J].计算机工程与科学,1999,21(4):69-73. 被引量:8
  • 3何俊,葛红,王玉峰.图像分割算法研究综述[J].计算机工程与科学,2009,31(12):58-61. 被引量:103
  • 4Sezgin M,Sankur B.Survey over Image Thresholding Techniques and Quantitative Performance Evaluation[J].Journal of Electronic Imaging,2004,13(1):146-165.
  • 5丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 6Hou Xiaodi,Zhang Liqing.Saliency Detection:A Spectral Residual Approach[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2007:1-8.
  • 7Cheng H D,Jiang X H,Sun H.Color Image Segmentation:Advances and Prospects[J].Pattern Recognition,2001,34(12):2259-2281.
  • 8van de Sande K E A,Gevers T,Snoek D G M.Evaluating Color Descriptors for Object and Scene Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1582-1596.
  • 9Vedaldi A,Fulkerson B.An Open and Portable Library of Computer Vision Algorithms[C]//Proceedings of the18th International Conference on Multimedia.Washington D.C.,USA:IEEE Press,2008:1469-1472.
  • 10Everingham M,Gool L,Williams C,et al.The PASCAL Visual Object Classes(VOC)Challenge[J].International Journal of Computer Vision,2010,88(2):303-338.

二级参考文献32

共引文献483

同被引文献27

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2徐方明,葛良全,周春良,吴曙辉.人脸检测及分割方法研究[J].计算机工程与应用,2007,43(4):213-215. 被引量:2
  • 3Shapiro L G,Stockman G C.Computer Vision[M].New Jersey,USA:Prentice-Hall,2001.
  • 4Magar A T,Shinde J V.A Survey of Techniques for Human Segmentation from Static Images[J].International Journal of Software and Web Sciences,2014,14(1):66-75.
  • 5Kohli P,Rihan J,Bray M,et al.Simultaneous Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts[J].International Journal of Computer Vision,2008,79(3):285-298.
  • 6Lin Zhe,Davis L S,Doermann D,et al.Hierarchical Parttemplate Matching for Human Detection and Segmentation[C]//Proceedings of the 11th International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2007:1-8.
  • 7Kumar M P,Torr P,Zisserman A.Objcut:Efficient Segmentation Using Top-down and Bottom-up Cues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(3):530-545.
  • 8Mori G,Malik J.Estimating Human Body Configura-tions Using Shape Context Matching[C]//Proceedings of the7th European Conference on Computer Vision.Berlin,Germany:Springer,2002:666-680.
  • 9Mori G,Ren Xiaofeng,Efros A,et al.Recovering Human Body Configurations:Combining Segmentation and Recognition[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2004:326-333.
  • 10Ren Xiaofeng,Berg A,Malik J.Recovering Human Body Configurations Using Pairwise Constraints Between Parts[C]//Proceedings of the 10th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2005:824-831.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部