期刊文献+

一种多模型协同的目标提取方法 被引量:1

An Object Extraction Method of Multi-model Cooperation
下载PDF
导出
摘要 固定摄像机目标提取多以高斯混合模型为背景模型,在检测运动缓慢、间歇停滞的目标时会出现前景目标空洞的问题。为此,提出一种能够适应目标间歇停滞的多模型协同目标提取方法。采用高斯混合模型进行背景学习,通过光线检测模型和场景状态检测模型协同控制背景适时更新,利用阴影检测模型剔除阴影。实验结果表明,与Kaew Tra Kul Pong P方法相比,该方法能较完整地提取到目标轮廓,且单帧处理时间较少。 Gaussian Mixture Model( GMM) is adopted to solve foreground detection problems. However,GMM can not detect objects in which do not move in the scene. This paper proposes the multi-model cooperative method to detect foreground objects in complex scene. Under the assumption that the camera is fixed,it first uses the adaptive GMM to build a background which is updated by the light detection model and the scene detection model. A shadow detection model is also used in this paper at last. It mades a comparison with two algorithms. Experimental results show that this method can completely extract the object contour,and single frame processing time is less.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期254-258,263,共6页 Computer Engineering
基金 国家"863"计划基金资助项目(2012AA101905)
关键词 目标提取 高斯混合模型 光线检测模型 场景状态检测模型 阴影检测模型 背景更新 object extraction Gaussian Mixture Model ( GMM ) light detection model scene state detection model shadow detection model background update
  • 相关文献

参考文献12

  • 1许新征,丁世飞,史忠植,贾伟宽.图像分割的新理论和新方法[J].电子学报,2010,38(B02):76-82. 被引量:146
  • 2Li Wei,Wu Xiaojuan,Matsumoto K,et al.Foreground Detection Based on Optical Flow and Background Subtract[C]//Proceedings of IEEE International Conference on Communications,Circuits and Systems.Washington D.C.,USA:IEEE Press,2010:359-362.
  • 3Gupta K,Kulkarni A V.Implementation of an Automated Single Camera Object Tracking System Using Frame Differencing and Dynamic Template Matching[EB/OL].[2014-02-21].http://link.springer.com/chapter/10.1007%2F978-1-4020-8741-7_44#.
  • 4Zhou Wei,Liu Yu,Zhang Weiming,et al.Dynamic Background Subtraction Using Spatial-color Binary Patterns[C]//Proceedings of the 6th International Conference on Image and Graphics.Washington D.C.,USA:IEEE Press,2011:314-319.
  • 5Hsiao P Y.A Region-based Background Modeling and Subtraction Using Partial Directed Hausdorff Distance[C]//Proceedings of ICRA’04.Washington D.C.,USA:IEEE Press,2004:956-960.
  • 6Fiala M,Shu Chang.Background Subtraction Using Selfidentifying Patterns[C]//Proceedings of the 2nd Canadian Conference on Computer and Robot Vision.Washington D.C.,USA:IEEE Press,2005:558-565.
  • 7穆亚东,周秉锋.基于颜色和纹理信息的快速前景提取方法[J].计算机学报,2009,32(11):2252-2259. 被引量:9
  • 8Wan Qin,Wang Yaonan.Multiple Moving Objects Tracking under Complex Scenes[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation.Washington D.C.,USA:IEEE Press,2006:9871-9875.
  • 9Stauffer C,Grimson W E L.Adaptive Background M ixture M odels for Real-tim e Tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,1999:252-255.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology Free Hidden Markov Models:Application to Background Modeling[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2001:294-301.

二级参考文献63

共引文献177

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部