期刊文献+

基于插值与剪切波融合的图像超分辨率重建 被引量:9

Image Super-resolution Reconstruction Based on Interpolation and Shearlet Fusion
下载PDF
导出
摘要 针对单幅图像超分辨率重建问题,提出一种基于软判决自适应(SAI)-双三次(Bicubic)插值与平移不变剪切波融合的超分辨率重建算法。对源图像分别进行SAI插值和Bicubic插值,采用平移不变剪切波变换对2幅插值图像进行多尺度、多方向分解,得到低频及高频子带,对于低频子带,根据区域系数方差确定模糊相似度,结合改进的S函数确定自适应加权融合规则,对于高频子带,采用新改进拉普拉斯能量和与加权平均相结合的融合规则进行处理,将得到的融合系数进行剪切波逆变换,从而得到高分辨率重建图像。实验结果表明,与原有的SAI插值算法相比,该算法能提升重建图像的清晰度及峰值信噪比。 For a single image Super-resolution( SR) reconstruction problem,a novel image SR algorithm based on Soft-decision Adaptive Interpolation ( SAI )-Bicubic interpolation and Shift-invariant Shearlet Transform ( SIST ) fusion is proposed. For each source image is separately interpolated by SAI and Bicubic interpolation,and the SIST is adopted to decompose the two interpolated images in different scales and directions,and the low-frequency and high-frequency sub-band coefficients of the two images are obtained. For the low frequency sub-band coefficients,according to the regional variance to determine the fuzzy similarity,a adaptive weighted fusion rule combined with improved sigmoid function is presented. For the high frequency sub-band coefficients,it uses a new Sum-modified Laplacian( SML) and is combined with the weighted average fusion rule. The high resolution image is obtained by performing the inverse SIST on the combined coefficients. Compared with the SAI,the imposed algorithm has very good effect on improving the clarity of the reconstructed image and Peak Signal to Noise Ratio( PSNR) .
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期274-279,共6页 Computer Engineering
基金 国家自然科学基金资助项目(11172086) 安徽省自然科学基金资助项目(1308085MA09) 安徽省教育厅自然科学研究基金资助重点项目(KJ2013A216)
关键词 超分辨率重建 软判决自适应插值 图像融合 平移不变性剪切波变换 S函数 改进拉普拉斯能量和 Super-resolution (SR) reconstruction Soft-decision Adaptive Interpolation (SAI) image fusion Shift-invariant Shearlet Transform (SIST) S function Sum-modified Laplacian (SML)
  • 相关文献

参考文献15

  • 1Hsiehs H,Andrews H C.Cubic Splines for Image Interpolation and Digital Filtering[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1978,26(6):508-517.
  • 2Keys R.Cubic Convolution Interpolation for Digital Image Processing[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1981,29(6):1153-1160.
  • 3田岩,田金文,柳健,张继贤,林宗坚.超分辨率技术的实现——一种改善的小波插值方法[J].中国图象图形学报(A辑),2003,8(12):1422-1426. 被引量:4
  • 4Tao Hongjiu,Tang Xinjian,Liu Jian.Super-resolution Remote Sensing Image Processing Algorithm Based on Wavelet Transform and Interpolation[C]//Proceedings of the 3rd International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere,Ocean,Environment,and Space.San Diego,USA:SPIE Proceedings,2003:259-263.
  • 5张晓威,郑雄波,朱磊.多小波图像插值算法研究[J].大学数学,2011,27(4):51-56. 被引量:2
  • 6Zhang Xiangjun,Wu Xiaolin.Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-decision Estimation[J].IEEE Transactions on Image Processing,2008,17(6):887-896.
  • 7Easley G,Labate D,Lim W Q.Sparse Directional Image Representations Using the Discrete Shearlet Transform[J].Applied and Computational Harmonic Analysis,2008,25(1):25-46.
  • 8Guo Kanghui,Labate D.Optimally Sparse Multidimensional Representation Using Shearlets[J].SIAM Journal on Mathematical Analysis,2007,39(1):298-318.
  • 9高国荣,许录平,冯冬竹.基于非抽样剪切波变换的遥感图像融合方法[J].农业机械学报,2013,44(12):221-226. 被引量:5
  • 10刘卫,殷明,栾静,郭宇.基于平移不变剪切波变换域图像融合算法[J].光子学报,2013,42(4):496-503. 被引量:22

二级参考文献34

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2李伟,朱学峰.基于第二代小波变换的图像融合方法及性能评价[J].自动化学报,2007,33(8):817-822. 被引量:23
  • 3LI X, ORCHARD MT. New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,10 (10) 1521--1527.
  • 4WANG Q. A contour-preserving image interpolation method[J].International Conference on Image Processing[C].Barcelona,Spain, 2003,673-676.
  • 5MARKS R J. Introduction to shannon sampling and interpolation theory[M]. NewYork: Spinger-Verlag, 1991.
  • 6PLAZIAC N. Image interpolation using neural networks [J]. IEEE Trans Image Processing, 1999, 8 (11): 1647--1651.
  • 7DARWISH A M,BEDAIR M S. An adaptive resampling algorithm for image zooming [C]//SPIE, 1996, 2666: 131--144.
  • 8JENSEN K, ANASTASSIOU D. Sub pixel edge localization and the interpolation of still image[J].IEEE Trans Image Processing, 1995,4 (3) : 285 - 295.
  • 9ROMBERG J K, CHOI H, BARANIUK R G. Bayesian tree-structured image modeling using wavelet-domain hidden markov models[J]. IEEE Trans. Image Processing, 2001,10(7) : 1056 --1068.
  • 10YOKOYA N, YAMAMOTO K. Fractal based analysis and interpolation of 3D natural surface shapes and their application to terrain Modeling[J].Computer Vision,Graphics and Image Processing, 1980,46(3) :284--302.

共引文献29

同被引文献89

  • 1肖潇,杨国光,白剑.基于最优参数的全景图像三次样条插值复原[J].红外与激光工程,2007,36(5):725-728. 被引量:5
  • 2赵鹏,浦昭邦.基于形态学4子带分解金字塔的图像融合[J].光学学报,2007,27(1):40-44. 被引量:10
  • 3GLASNER D, BAGON S, IRANI M. Super-resolution from a single image [ C ]. Proceedings of 2009 IEEE 12th International Conference on Computer Vision, 2009: 349-356.
  • 4DEMIREL H, ANBARJAFARI G. Image resolution en- hancement by using discrete and stationary wavelet de- composition[J]. IEEE Transactions on Image Process- ing, 2011, 20(5) : 1458-1460.
  • 5BHUSI-IAN D B, SOWMYA V, SOMAN K P. Super resolution blind reconstruction of low resolution images using framelets based fusion [ C ]. Proceedings of 2010 International Conference on Recent Trends in Informa- tion, Telecommunication and Computing ( ITC), 2010 : 100-104.
  • 6NASIR H, STANKOVI V, MARSHALL S. Singular value decomposition based fusion for super-resolution image reconstruction [ J ]. Signal Processing: Image Communication, 2012, 27(2) : 180-191.
  • 7LI M, NGUYEN T Q. Markov random field model- based edge-directed image interpolation [ J ]. IEEE Transactions on Image Processing, 2008, 17 ( 7 ) : 1121-1128.
  • 8ZHANG X J, WU X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation ] 1. IEEE Transactions on Image Processing, 2008, 17(6) : 887-896.
  • 9ANBARJAFARI G, DEMIREL H. Image super resolu- tion based on interpolation of wavelet domain high fre- quency subbands and the spatial domain input image [J]. ETRI Journal, 2010, 32(3): 390-394.
  • 10NARASIMHAN K, ELAMARAN V, KUMAR S, et al. Comparison of satellite image enhancement techniques in wavelet domain [ J ]. Research Journal of Applied Sci- ences, Engineering and Technology, 2012, 24 (4): 5492-5496.

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部