摘要
针对单幅图像超分辨率重建问题,提出一种基于软判决自适应(SAI)-双三次(Bicubic)插值与平移不变剪切波融合的超分辨率重建算法。对源图像分别进行SAI插值和Bicubic插值,采用平移不变剪切波变换对2幅插值图像进行多尺度、多方向分解,得到低频及高频子带,对于低频子带,根据区域系数方差确定模糊相似度,结合改进的S函数确定自适应加权融合规则,对于高频子带,采用新改进拉普拉斯能量和与加权平均相结合的融合规则进行处理,将得到的融合系数进行剪切波逆变换,从而得到高分辨率重建图像。实验结果表明,与原有的SAI插值算法相比,该算法能提升重建图像的清晰度及峰值信噪比。
For a single image Super-resolution( SR) reconstruction problem,a novel image SR algorithm based on Soft-decision Adaptive Interpolation ( SAI )-Bicubic interpolation and Shift-invariant Shearlet Transform ( SIST ) fusion is proposed. For each source image is separately interpolated by SAI and Bicubic interpolation,and the SIST is adopted to decompose the two interpolated images in different scales and directions,and the low-frequency and high-frequency sub-band coefficients of the two images are obtained. For the low frequency sub-band coefficients,according to the regional variance to determine the fuzzy similarity,a adaptive weighted fusion rule combined with improved sigmoid function is presented. For the high frequency sub-band coefficients,it uses a new Sum-modified Laplacian( SML) and is combined with the weighted average fusion rule. The high resolution image is obtained by performing the inverse SIST on the combined coefficients. Compared with the SAI,the imposed algorithm has very good effect on improving the clarity of the reconstructed image and Peak Signal to Noise Ratio( PSNR) .
出处
《计算机工程》
CAS
CSCD
北大核心
2015年第5期274-279,共6页
Computer Engineering
基金
国家自然科学基金资助项目(11172086)
安徽省自然科学基金资助项目(1308085MA09)
安徽省教育厅自然科学研究基金资助重点项目(KJ2013A216)
关键词
超分辨率重建
软判决自适应插值
图像融合
平移不变性剪切波变换
S函数
改进拉普拉斯能量和
Super-resolution (SR) reconstruction
Soft-decision Adaptive Interpolation (SAI)
image fusion
Shift-invariant Shearlet Transform (SIST)
S function
Sum-modified Laplacian (SML)