期刊文献+

基于散度分析的脑电信号特征选择 被引量:4

Electroencephalogram Feature Selection Based on Divergence Analysis
下载PDF
导出
摘要 为准确选择脑电信号的频率与通道参数,提高样本的分类识别率,提出一种基于散度的脑电信号特征选择方法。利用散度分析算法从样本数据的原始特征中选取散度值较大的k个特征,并对其进行基于共空间模型的特征提取与线性判别分类器的分类识别。使用2005年BCI竞赛提供的IVa数据集5位样本数据进行实验,结果表明,采用散度分析算法得到的测试样本与训练样本平均识别率为95.54%和84.57%,均高于相关系数和互信息选择算法。 In order to select the effective frequency and electrodes components, this paper promotes an Electroencephalogram( EEG) feature selection method based on divergence analysis to improve classification accuracy. Throughout the five tested samples from Brain-computer Interface ( BCI ) Competition III dataset IVa, it utilizes divergence analysis algorithms to select the maximum value of the k-space from the original data features, then uses feature extraction based on Common Spatial Pattern ( CSP ) aimed at this k-space feature and classifies by Linear Discriminant Analysis( LDA) . The experiment identification that the average rate of classification accuracy can obtained is 95. 54% under training pattern, while reached 84. 57% under test pattern, higher than the selection algorithm of correlation coefficient and mutual information.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期290-294,共5页 Computer Engineering
基金 特殊环境机器人技术四川省重点实验室基金资助项目(13ZXTK07) 西南科技大学研究生创新基金资助项目(14ycx113)
关键词 脑电信号 脑机接口 特征选择 散度 共空域模式 线性判别分类器 Electroencephalogram ( EEG ) Brain-computer Interface ( BCI ) feature selection divergence CommonSpatial Pattern (CSP) linear discriminant classifier
  • 相关文献

参考文献10

  • 1Wolpaw J R,Birbaumer N,Heetderks W J,et al.Braincomputer Interface Technology:A Review of the First International Meeting[J].IEEE Transactions on Rehabilitation Engineering,2000,8(2):164-173.
  • 2Nicolas-Alonso L F,Corralejo R,lvarez D,et al.Analytic Common Spatial Pattern and Adaptive Classification for Multiclass Motor Imagery-based BCI[C]//Proceedings of the 6th Annual International IEEE EMBS Conference on Neural Engineering,November 6-8,2013,San Diego,USA.Washington D.C.,USA:IEEE Press,2013:1084-1087.
  • 3Makeig S,Kothe C,Mullen T,et al.Evolving Signal Processing for Brain-computer Interfaces[J].Proceedings of the IEEE,2012,100(13):1567-1584.
  • 4王艳艳.多任务脑-机接口导联选择与分类算法研究[D].南昌:南昌大学,2012.
  • 5张胜,王蔚.基于支持向量机的BCI导联选择算法[J].中国生物医学工程学报,2009,28(4):624-627. 被引量:2
  • 6Ang Kai Keng,Chin Zheng Yang,Wang Chuanchu,et al.Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b[J].Frontiers in Neuroscience,2012,6(39):1-9.
  • 7张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 8Lu H,Eng H L,Guan C,et al.Regularized Common Spatial Pattern with Aggregation for EEG Classification in Small Sample Setting[J].IEEE Transactions on Biomedical Engineering,2010,57(12):2936-2946.
  • 9Wu S L,Wu C W,Pal N R,et al.Common Spatial Patterns and Linear Discriminant Analysis for Motor Imagery Classification[C]//Proceedings of IEEE Symposium on Computational Intelligence,Cognitive Algorithms,Mind and Brain.Washington D.C.,USA:IEEE Press,2013:146-151.
  • 10Mohanta M S,Aghaei A S,Plataniotis K N.Regularized LDA Based on Separable Scatter Matrices for Classification of Spectral EEG Patterns[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2013:1237-1241.

二级参考文献8

  • 1Muller KR, Anderson CW, Birch GE. Linear and nonlinear methods for brain-computer interfaces [J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2003,11 (2) : 165 - 169.
  • 2Dornhege G, Blankertz B, Curio G, et al. Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms[J]. IEEE Trans Biomed Eng, 2004.6, 51(6) : 993 - 1002.
  • 3Wang Wei, Zhang Sheng, Yn Shuibao, et al. Continuous EEG classification based on matching pursuit with chirplet atoms[A]. In: Proceedings of the International conference on sensing, computing and automation[C]. Waterloo, Canada: Watam Press, 2006. 2592 - 2594.
  • 4Weston J, Mukherjee S, Chapelle O, et al. Feature selection for SVMs[A]. In: Solla SA, Leen TK, Muller KR, eds. Advances in Neural Information Processing Systems [ C ]. Cambridge, MA : MIT Press, 2000. 526- 532.
  • 5Benjamin B, Muller KR, Curio G, et al. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials[J]. IEEE Trans Biomed Eng, 2004,51(6) :1044- 1051.
  • 6Hamid EY, M ardiana R, Kawasaki ZI. Method for RMS and power measurements based on the wavelet packet transform [ J]. IEEE Proceedings-Science, Measurement and Technology, 2002,149(2) : 60 - 66.
  • 7Blanco S, DpAttellis S. Time - frequency analysis of electroencephalograms series (Ⅱ): Gabor and Wavelet Transforms [J]. Physical Review E, 1996, 54(6) : 6661 - 6672.
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268

共引文献26

同被引文献75

  • 1孟明,佘青山,罗志增.HMM在下肢表面肌电信号步态识别中的应用[J].华中科技大学学报(自然科学版),2011,39(S2):176-179. 被引量:13
  • 2姜波,朱林剑,孙守林,包海涛.脑电信号控制上肢假肢的研究现状[J].中国康复医学杂志,2005,20(3):216-217. 被引量:4
  • 3高莉,黄力宇,丁翠玲.结合PCA和ICA的脑磁信号消噪研究[J].西安电子科技大学学报,2007,34(6):939-943. 被引量:4
  • 4Saab M E,Gotman J. A System to Detect the Onset of Epileptic Seizures in Scalp EEG [ J 1- Journal on the International Federation of Clinical Neurophysiology, 2005,116 ( 2 ) :427-442.
  • 5Li Peiyang,Xu Peng, Zhang Rui, et al. L1 Norm Based Common Spatial Patterns Decomposition for Scalp EEG BCI~ Jl ~ Biomedical Engineering Online ,2013,12( 15 ) : 71-77.
  • 6Pfurtscheller G, Neuper C. Motor Imagery and Direct Brain-computer Communication I J 1. Proceedings of the IEEE,2001,89(7) :1123-1134.Pfurtscheller G, Neuper C. Motor Imagery and Direct Brain-computer Communication I J 1. Proceedings of the IEEE,2001,89(7) :1123-1134.
  • 7Jahan M,Khan Y U,Sharma B B. Classification of EEG Signals Based on Imaginary Movement of Right and Left Hand Wrist ~ C ]//Proceedings of International Conference on Medical Imaging, m-Health and Emerging Communication Systems. Washington D. C. ,USA:IEEE Press ,2014 : 193-196.
  • 8Zabidi A,Mansor W, Khuan Y L, et al. Classification of Imagined Writing from EEG Signals Using Autoregressive Features I C ]//Proceedings of IEEE Symposium on Computer Applications and Industrial Electronics. Washington D. C. , USA : IEEE Press, 2012 : 205 -208.
  • 9Amin H U, Malik A S, Ahmad R F, et al. Feature Extraction and Classification for EEG Signals Using Wavelet Transform and Machine Learning Techniques EJJ. Australasian Physical & Engineering Sciences in Medicine, 2015,38( 1 ) :139-149.
  • 10He Lin,Yu Zhuliang, Gu Zhenghui, et al. Bhattacharyya Bound Based Channel Selection for Classification of Motor Imageries in EEG Signals [C]//2009中国控制与决策会议论文集2.北京:[出版者不详],2009:2353-2356.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部