期刊文献+

基于标签主题和概念空间的个性化推荐研究 被引量:7

Research on the Personalized Recommendation Based on Tag Topic and Concept Space
下载PDF
导出
摘要 社会化标签已经成为个性化信息推荐领域的研究热点之一。为了克服标签推荐存在的不足,文章提出一种综合考虑标签主题和主题概念空间两种因素的标签推荐方法 (LDA-Concept)。通过主题下标签的推荐可以保证推荐的准确性,标签概念空间的推荐可以保证多样性。以MovieLens为平台进行实验,结果表明主题因素和概念空间因素有着同等的重要性,提出的LDA-Concept方法优于单纯使用LDA方法。 Social tag becomes one of the hot research issues on personalized information recommendation. In order to overcome the shortcomings of tag recommendation, this paper proposes a tag recommendation method (LDA-Concept) that comprehensively considers the factors of tag topic and topic concept space. Recommendation with tag topics can guarantee the accuracy of recommendation, and the recommendation of tag concept space can guarantee diversity. Taking MovieLens as the experimental platform, the experimental result shows that topic factor and concept space factor play equal importance. The LDA-Concept method proposed in the paper is superior to the LDA method.
出处 《情报理论与实践》 CSSCI 北大核心 2015年第5期105-111,共7页 Information Studies:Theory & Application
基金 武汉大学2013年研究生自主科研项目的成果 项目编号:2013104010206
关键词 社会化标签 潜在主题 概念空间 个性化推荐 social tag latent topic concept space personalized recommendation
  • 相关文献

参考文献30

  • 1NORMORE L, BLAYLOCK B N. Opinions on the use and val- ue of social tagging [ C ]// Proceedings of the American Society for Information Science and Technology, 2009, 46 ( 1 ) : 1-8.
  • 2VALLET D, CANTADOR I, JOSE J. Personalizing web search with folksonomy-based user and document profiles [ C ]// Pro- ceedings of the 32a European Conference on Advances in Infor- mation Retrieval, 2010: 420-431.
  • 3ZANARDI V, CAPRA L. Social ranking: uncovering relevant content using tag-based recommender systems [ C ]// Proceed- ings of the 2008 ACM Conference on Recommenders Systems, 2008: 51-58.
  • 4TSO-SUTTER K H L, MARINHO L B, SCHMIDT-THIEME L. Tag-aware recommender systems by fution of collaborative fil- tering algorithms [ C ]// Proceedings of the 2008 ACM Sympo-slum on Applied Computing SAC' 08, 2008 : 1995-1999.
  • 5TATU M, SRIKANTH M, D' SIVA T. Tag recommendations using bookmark content [ C ] // Proceedings of ECML PKDD Discovery Challenge (RSDC08), 2008 : 96-107.
  • 6LIPCZAK M, HU Y, KOLLET Y, et al. Tag sources for rec- ommendation in collaborative tagging system [ C ] // Proceed- ings of ECML PKDD Discovery Challenge, 2009, 497: 157-172.
  • 7GRIFFITHS T, STEYVERS M. Probabilistic topic models [ G] // Latent Semantic Analysis: A Road to Meaning. Hillsdale, N J: Laurence Erlbaum, 2006.
  • 8HOFMANN T. Probabilistic latent semantic indexing [ C ] // Proceedings of the 22"0 Annual ACM Conference on Research and Development Information Retrieval, Berkeley, California, USA, 1999: 50-57.
  • 9DEERWESTER S, DUMAIS S, LANDAUER T, et al. Inde- xing by latent semantic analysis [ J ]. Journal of the American Society of Information Science, 1990, 41 (6) : 391-407.
  • 10BLEI D, NG A, JORDAN M. Latent diriehlet allocation [ J]. Journal of Machine Learning Research, 2003, 3 (4/5) : 993- 1022.

二级参考文献40

  • 1周荣庭,郑彬.分众分类:网络时代的新型信息分类法[J].现代图书情报技术,2006(3):72-75. 被引量:57
  • 2王翠英.Folksonomy初探[J].图书馆学研究,2007(5):85-87. 被引量:11
  • 3Adam Mathes. Folksonomics: cooperative classification and communication through shared metadata [ EB/OL ]. http://www. adammathes, corn/academic/computer-mediated-communication/fol ksonomies, html, 2004.
  • 4Wildpedia. org. Folksonomy [DB/OL ]. http://en, wikipedia. org/wiki/Folksonomy, 2008.
  • 5Golder S, Huberrnan B A. The structure of collaborative tagging systems[ J]. Journal of Information Science, 2006, 32 (2) : 198- 208.
  • 6Berners-Lee T, Hendler J, Lassila O. The semantic web[J]. ScientLfie American, 2001,284 (5) :34-43.
  • 7Brickley D, Guha R. RDF vocabulary description language 1.0: RDF schema [ EB/OL]. http://www, w3. org/TR/rdf-schema/, 2003.
  • 8Sean Bechhofer, Frank Van Harmcnlen, Jim Hendler, et al. Patel-schneider, lynn andrea stein. OWL Web ontology language reference[ EB/OL]. http://www, w3. org/TR/owl-ref/, 2004-02-10.
  • 9Peter F Patel-Schneider, Patrick Hayes, Ian Horrocks. OWL web ontology language semantics and abstract syntax [ Z ]. W3C Recommendation, 2004.
  • 10Hak-Lae Kim, John G Breslin, Sung-Kwon Yang, et al. Simple algorithms for representing tag frequencies in the SCOT exporter [ C ]. 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2007,536-539.

共引文献36

同被引文献106

  • 1焦艳鹏,刘葳.知识获取、人工智能与图书馆精神[J].中国图书馆学报,2021,47(5):20-32. 被引量:16
  • 2倪维健,郭浩宇,刘彤,曾庆田.基于多头自注意力神经网络的购物篮推荐方法[J].数据分析与知识发现,2020,4(2):68-77. 被引量:7
  • 3高丹,何琳,孙帆,刘建斌.国际数字人文领域研究方法的量化分析及启示研究[J].情报科学,2022,40(10):114-122. 被引量:6
  • 4石陆魁,何丕廉.一种基于密度的高效聚类算法[J].计算机应用,2005,25(8):1824-1826. 被引量:21
  • 5刘则渊,尹丽春.国际科学学主题共词网络的可视化研究[J].情报学报,2006,25(5):634-640. 被引量:99
  • 6Wei Xing, Croft W B. LDA-based document models for Ad-hoc re- trieval [ C ]//Proceedings of the 29th Annual International ACM SI- GIR Conference on Research and Development in Information Re- trieval. New York : ACM ,2006 : 178 - 185.
  • 7Ma Dashun, Rao Lan, Wang Ting. An empirical study of SLDA for information retrieval[ C ]//Proceeding of the 7th Asia Information Retrieval Societies Conference,Berlin : Springer, 2011:84-92.
  • 8Lukins S K, Kraft N A, Etzkorn L H. Source code retrieval for bug localization using Latent Dirichlet Allocation [ C ]//Proceedings of the 15th Working Conference on Reverse Engineering. Los Angeles: IEEE,2008,155 - 164.
  • 9Park L A F, Ramamohanarao K. The sensitivity of Latent Dirichlet Allocation for information retrieval [ C ] //Proceedings of the Joint European Conference on Machine Learning (ECML)/European Conference on Principles and Practice of Knowledge Discovery in Databases ( PKDD ). Berlin : Sprmger, 2009 : 176 - 188.
  • 10Coulter N, Monarch I, Konda S. Software engineering as seen through its research literature : A study in co -word analysis [ J 1. Journal of the American Society for Information Science, 1998,49 ( 13 ) : 1206 - 1223.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部