期刊文献+

基于时空关联图模型的视频监控目标跟踪 被引量:11

Object tracking in surveillance videos using spatial-temporal correlation graph model
下载PDF
导出
摘要 多摄像机监控环境下的无重叠视域目标跟踪问题十分具有挑战性,其原因在于跟踪目标在网络中的转移与运动规律往往具有不确定性.目标跟踪的关键问题在于摄像机之间的目标关联以及如何依据网络拓扑结构来找到目标之间的对应关系.提出了一种图模型来对摄像机网络中的时空关联关系进行表达.图模型中的节点表示目标在摄像机视域中的出现区域和消失区域,边由时间与空间关系进行约束.提出了一种将目标外观模型与图模型相融合的跟踪方法,其中外观模型通过协方差描述子进行特征融合,同时,结合二部图匹配策略来解决多摄像头目标跟踪中的识别与匹配问题.在真实监控视频上的实验验证了该方法的有效性. Object tracking in non-overlapping multi-camera surveillance is a challenging problem since the transition time between cameras varies greatly from individual to individual with uncertainty. The key prob- lem of object tracking in wide areas is data association and how to find correspondences between objects via camera topology. A novel graph model was proposed to capture the spatial-temporal correlation among objects, which are moving in the camera network. Source/sink regions are graph nodes, and the graph edges are constructed by the spatial and temporal constrains. Specifically, a tracking method combining appearance model and graph model was proposed to solve the problem of object re-identification and data association via bipartite matching in multi-camera object tracking. In addition, region covariance descriptor was utilized to fuse the appearance feature. Experiments with real videos validate the proposed approach.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第4期713-720,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家863计划资助项目(2014AA015101) 国家自然科学基金资助项目(61402048) 国家工信部物联网发展专项资金 北京市教育委员会共建项目
关键词 目标跟踪 多摄像机网络 时空关联图模型 二部图匹配 数据关联 object tracking muhi-camera network spatial-temporal graph model bipartite matching data association
  • 相关文献

参考文献20

  • 1Wang X. Intelligent multi-camera video surveillance:a review[C]//Pattern Recognition Letters.Netherlands:Academic Press,Elsevier,2013,3(4):3-19.
  • 2Fu H,Ma H, Ming A.EGMM:an enhanced Gaussian mixture model for detecting moving objects with intermittent stops[C]//IEEE International Conference on Multimedia and Expo.Piscataway,NJ:IEEE,2011,7041(2):1-6.
  • 3Fu H,Ma H, Liu L.Robust human detection with low energy consumption in visual sensor network[C]//IEEE International Conference on Mobile Ad-hoc and Sensor Networks.Piscataway,NJ:IEEE,2011:91-97.
  • 4Zheng W S, Gong S,Xiang T.Reidentification by relative distance comparison[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):653-668.
  • 5Wu Y,Lim J, Yang M H.Online object tracking:a benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2013,9(4):2411-2418.
  • 6Kalal Z, Mikolajczyk K,Matas J.Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
  • 7Makris D,Ellis T, Black J.Bridging the gaps between cameras[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2004,2:II205-II210.
  • 8Stauffer C. Estimating tracking sources and sinks[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshop.Piscataway,NJ:IEEE,2003:35.
  • 9Tieu K, Dalley G,Grimson W E L.Inference of non-overlapping camera network topology by measuring statistical dependence[C]//IEEE International Conference on Computer Vision.Piscataway ,NJ:IEEE,2005,2:1842-1849.
  • 10Loy C C, Xiang T,Gong S.Multi-camera activity correlation analysis [C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:1988-1995.

二级参考文献33

  • 1Kettnaker V, Zabih R. Bayesian multi-camera surveillance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 253-259.
  • 2Makris D, Ellis T, Black J. Bridging the gaps between cameras. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wash- ington D.C., USA: IEEE, 2004. 205-210.
  • 3Pasula H, Russell S J, Ostland M, Ritov Y. Tracking many objects with many sensors. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers Inc, 1999. 1160-1171.
  • 4Porikli F, Divakaran A. Multi-camera calibration, object tracking and query generation. In: Proceedings of the IEEE International Conference on Multimedia and Expo. Baltimore, USA: IEEE, 2003. 653-656.
  • 5Javed O, Rasheed Z, Shafique K, Shah M. Tracking across multiple cameras with disjoint views. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 952-957.
  • 6Song B, Roy-Chowdhury A K. Stochastic adaptive tracking in a camera network. In: Proceedings of the llth IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 7Marinakis D, Dudek G, Fleet D J. Learning sensor network topology through Monte Carlo expectation maximization. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 4581-4587.
  • 8Niu C W, Grimson E. Recovering non-overlapping network topology using fax-field vehicle tracking data. In: Proceedings of the 18th IEEE International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 944-949.
  • 9Faxrell R, Davis L S. Decentralized discovery of camera network topology. In: Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras. Stanford, USA: IEEE, 2008. 1-10.
  • 10Zhang L, Li Y, Nevatia R. Global data association for multiobject tracking using network flows. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.

共引文献10

同被引文献76

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部