期刊文献+

机器具有不可用时间间隔的两机流水车间调度问题求解性质 被引量:1

Property of solving two-machine flow shop scheduling with unavailable interval
下载PDF
导出
摘要 在实际制造环境中,机器由于随机故障或进行预防性维护等,在某些时间段内处于不可用状态,为此,该文研究了任意一台机器具有不可用时间间隔的两机流水车间调度问题,给出了使用Johnson算法得到问题最优解的条件,分析了将Johnson算法作为问题启发式算法的最坏性能比范围。该文研究结果为探索机器具有不可用时间间隔的两机流水车间调度问题的最优算法提供了理论依据。 In view of that a machine is unavailable due to breakdowns or preventive maintenances in the practical manufacturing environment, the two-machine flow shop scheduling problem with an una- vailable interval on any machine is studied. The optimality condition of solving the problem by the Johnson algorithm is presented. The worst-case performance ratio of the Johnson algorithm as a heuristic is analyzed. The results provide the theoretical bases for exploring the optimal algorithm of the two-machine flow shop scheduling problem with an unavailable interval.
作者 陈可嘉 王潇
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第2期202-205,214,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(70901021) 教育部新世纪优秀人才支持计划(NCET-11-0903)
关键词 两机流水车间调度 不可用时间间隔 Johnson算法 最坏性能比 two-machine flow shop scheduling unavailable intervals Johnson algorithm worst-case performance ratio
  • 相关文献

参考文献12

  • 1Lee C Y. Minimizing the makespan in the two-machine flowshop scheduling problem with an availability constraint [ J ]. Operations Research Letters, 1997, 20(3) :129-139.
  • 2Lee C Y. Two-machine flowshop scheduling with availability constraints [ J ]. European Journal of Operational Research, 1999,114 (2) :420-429.
  • 3Cheng T C E, Wang G Q. An improved heuristic for two-machine flowshop scheduling with an availability constraint [ J ]. Operations Research Letters, 2000, 26(5 ) :223-229.
  • 4Cheng T C E, Liu Z H. Approximability of two-machine no-wait flowshop scheduling with availability constraints [ J ]. Operations Research Letters, 2003, 31(4) :319-322.
  • 5Breit J. An improved approximation algorithm for two- machine flow shop scheduling with an availability constraint [ J ]. Information Processing Letters, 2004, 90(6) :273-278.
  • 6Breit J. A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint [ J ]. Computers & Operations Research .2006.33 ( 8 ) :2143-2153.
  • 7Allaoui H, Artiba A, Elmaghraby S E, et al. Scheduling of a two-machine flowshop with availability constraints on the first machine [ J ]. International Journal of Production Economics, 2006,99 ( 1 - 2 ) : 16- 27.
  • 8Wang X L, Cheng T C E. Heuristics for two-machine flowshop scheduling with setup times and an availability constraint [ J ]. Computers & Operations Research, 2007,34( 1 ) : 152-162.
  • 9Wang X L,Cheng T C E. An approximation scheme for two-machine flowshop scheduling with setup times and an availability constraint [ J ]. Computers & Operations Research,2007,34 ( 10 ) : 2894-2901.
  • 10Allaoui H, Lamouri S, Artiba A, et al. Simultaneously scheduling n jobs and the the two-machine flow shop [ J ]. International Journal 2008,112(1) :161-167.

同被引文献18

  • 1刘延风,刘三阳.置换流水车间调度的蚁群优化算法[J].计算机应用,2008,28(2):302-304. 被引量:7
  • 2Lawler E L, Lenstra J K, Kan A H G R, et al. Sequencing and scheduling: Algorithms and complexity[J].Handbooks in Ope- rations Research and Management Science, 1993,4 (2) : 445-522.
  • 3Garey M R,Johnson D S,sethi tL The complexity of flow shop and job shop scheduling [J]. Math Ops Res, 1976,1 (2) : 117-129.
  • 4Taillard E. Some efficient heuristic methods for the flow shop sequencing problem[J].European Journal of Operational Re- search, 1990,47(1) :65-74.
  • 5Reeves C R. A genetic algorithm for flow shop sequencing[J]. Computers & Operations Research, 1995,22 (1) : 5-13.
  • 6Lee C Y, Chen Z L. Machine scheduling with transportation con- siderations [J]. Journal of Scheduling, 2001,4 : 3-24.
  • 7Kise H, Shioyama T, Ibaraki T. Automated two-machine Flow- shop scheduling,a solvable case[J]. IIE Transactions, 1991,23 (1) : 10-16.
  • 8Hurink J,Knust S. Makespan minimization for flow-shop prob- lems with transportation times and a single robot [J]. Discrete Applied Mathematics, 2001,112 ( 1 ) : 199-216.
  • 9Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness [M]. Wh Freeman & Com- pany, 1979.
  • 10时凌,文军.带运输时间和自动机的流水作业排序问题的复杂性[J].数学物理学报(A辑),2008,28(5):967-970. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部