期刊文献+

顾及异向性的局部径向基函数三维空间插值 被引量:9

A 3D Local RBF Spatial Interpolation Considering Anisotropy
原文传递
导出
摘要 针对三维局部径向基函数(radial basis function,RBF)空间插值过程中合理设置待插值点的邻近搜索范围问题,提出了一种依据变异函数分析探索空间异向性的局部径向基函数插值方法。首先,构建采样点的协方差矩阵求解数据的三个轴向;然后,通过旋转变换将数据变换到新的坐标系下,根据地统计中的变异函数计算三个方向的变程,并将三个变程设置为局部搜索椭球体的三个轴;最后,对每个采样点构建节点RBF,通过对待插值点影响范围内的节点RBF进行线性加权组合,求出待插点的属性值。实验结果表明,该方法顾及了空间数据的异向性,计算精度高,插值结果可靠,是一种可行的顾及异向性的三维空间插值方法。 Aiming at the searching range of interpolation points in the process of three-dimensional (3D), local radial basis function (RBF) interpolation based on exploring spatial anisotropy with vario- gram analysis was proposed. Firstly, three axes of the data was solved by constructing covariance ma- trix of the sampling point data and then the data was transformed into the new coordinate system by rotating transformation~ the range of each direction was calculated using geostatistical variograms; the three values of range was set as three axes of the ellipsoid; at last, node RBF at each sample point was built. The attribute values of interpolation were solved by linear combination of node RBF. Experi- mental results show that the proposed method is a feasible method for 3D spatial interpolation consid- ering anisotropy with high accuracy and reliable interpolation result.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第5期632-637,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41271383) 江苏省普通高校研究生科研创新计划资助项目(CXLX13_376) 南京师范大学研究生科研创新计划资助项目~~
关键词 各向异性 变异函数 径向基函数 空间插值 anisotropy variogram RBF spatial interpolation
  • 相关文献

参考文献13

  • 1Yokota R, Barba L A, Knepley M G. PetRBF: A Parallel O(N) Algorithm for Radial Basis Function Interpolation with Gaussians[J]. Computer Meth- ods in Applied Mechanics and Engineering, 2010, 199(25-28): 1 793-1 804.
  • 2Casciola G, Lazzaro D, Montefusco L B, et al. Fast Surface Reconstruction and Hole Filling Using Posi- tive Definite Radial Basis Function[J]. Numerical Algorithms, 2005, 39(1-3): 289-305.
  • 3徐爱萍,圣文顺,舒红.时空积和模型的数据插值与交叉验证[J].武汉大学学报(信息科学版),2012,37(7):766-769. 被引量:9
  • 4陈传法,蔡乾广.DEM快速构建的最小二乘配置法[J].武汉大学学报(信息科学版),2013,38(1):86-89. 被引量:4
  • 5Fischler M A, Bolles R C. Random Sample Consen- sus: A Paradigm for Model Fitting with Applica- tions to Image Analysis and Automated Cartography[J]. Communications of the Associaion for Compu- ting Machinery, 1981, 24(6) : 381-395.
  • 6Lazzaro D, Montefusco L B. Radial Basis Functions for the Multivariate Interpolation of Large Scattered Data Sets[J]. Journal of Computational and Ap- plied Mathematics, 2002, 140(1/2): 521-536.
  • 7张锦明,游雄,万刚.径向基函数算法中插值参数对DEM精度的影响[J].武汉大学学报(信息科学版),2013,38(5):608-612. 被引量:22
  • 8Lin G F, Chen L H. A Spatial Interpolation Meth- od Based on Radial Basis Function Networks Incor- porating a Semivariogram Model [J]. Journal of Hydrology, 2004, 288(3/4): 288-298.
  • 9Franke R, Nielson G. Smooth Interpolation of Large Sets of Scattered Data [J]. International Journal for Numerical Methods in Engineering, 1980, 15(11):1 691-1 704.
  • 10Shu C, Ding H, Yeo K S. Local Radial Basis Func- tion-based Differential Quadrature Method and its Application to Solve Two-Dimensional Incompressi- ble Navier-Stokes Equations[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192 (7/8) :941-954.

二级参考文献31

  • 1戴碧波,王李管,贾明涛,刘红兵,荆永滨,曾庆田.三维数字建模技术在某铜矿山中的应用[J].地质与勘探,2007,43(3):97-101. 被引量:35
  • 2Cowpertwait P S P. A Spatial-temporal Point Process Model of Rainfall for the Thames Catch-ment,UK[J]. Journal of Hydrology, 2006, 330: 586-595.
  • 3Im H K, Rathouz P J, Frederick J E. Space-time Modeling of 20 Years of Daily Air Temperature in the Chicago Metropolitan Region[J]. Environmet- ries, 2009, 20(5): 494-511.
  • 4Gething P W, Atkinson P M, Noor A M, et al. A Local Space-time Kriging Approach Applied to a National Outpatient Malaria Data Set[J]. Comput- ers Geosciences, 2007,(33): 1 337-1 350.
  • 5Huerta G, Sans6 B, Stroud J R. A Spatiotemporal Model for Mexico City Ozone Levels[J]. Journal of the Royal Statistical Society (Series C), 2004, 53 (2) : 231-248.
  • 6Lark R M. Two Robust Estimators of the Cross- variogram for Multivariate Geostatistical Analysis of Soil Properties[J]. European Journal of Soil Sci- ence, 2003,54(1): 187-202.
  • 7De Cesare L, Myers D E, Posa D. Estimating and Modeling Space-time Correlation Structures [J]. Statistics & Probability Letters, 2001,51:9-14.
  • 8De Cesare L, Myers D E, Posa D. Product-sum Co- variance for Space-time Modeling: an Environmental Application[J]. Environmetrics, 2001,12:11-23.
  • 9Ho{ierka J,Cebecauer T,Sri M. Optimisation of In- terpolation Parameters Using a Cross-validation[J]. Earth Surface Processes and Landforms, 2005, 30 (4) :461-477.
  • 10Longley P A, Goodchild M F, Maguire D J, et al. Ge- ographical Information Systems, Volume 1, Princi- ples and Technical Issues, Second Edition [ M]. USA : John Wiley & Sons, 1999.

共引文献45

同被引文献91

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部