期刊文献+

矢栅一体化拓扑关系的度量描述研究 被引量:3

Quantitative Representation of Topology Relations Based on Integrative Data Model of Vector and Raster
原文传递
导出
摘要 首先,借助传统的9交模型确定了矢栅一体化数据模型拓扑关系的定性表达;其次,利用重叠部分的栅格数目占各个目标的比率来确定交叠分量,同时根据栅格的统计量来描述两目标接近程度的邻近分量;最终,将定性的拓扑关系、用以度量化描述的交叠分量及邻近分量以三元组的形式来描述目标间的拓扑关系,从而更加有效地实现了多类型地理目标拓扑关系的度量化描述。 In Geographic Information Systems (GIS), the exploration of the metric descriptions for to- pological spatial relations has been an active area of research. Construction processing of a metric de- scription is directly influenced by spatial data model. Vector and raster data models are the two types of basic spatial data models. These two data models have complimentary advantages in terms of de- scribing spatial relations between objects. The integrative data model of vector and raster stems from the integration of the advantages of vector and raster data model. Firstly, this paper defines qualita- tive topology relations by using the 9-intersection model. Secondly, the ratio of the grid number of in- tersection to the two objects, is used to determine the intersect component. Thirdly, the maximum and minimum distances are used to determine the closeness component. Finally, a triple group inclu- ding qualitative topology relations, intersect component and closeness component, is proposed to de- scribe topology spatial relation. Because of two advantages of integrative data model of vector and ras- ter, the metric description of topology between different type objects can be realized more effectively in this paper.
作者 王珂 张周威
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第5期638-643,共6页 Geomatics and Information Science of Wuhan University
基金 中国博士后科学基金资助项目(2012M510053) 国家自然科学基金资助项目(41105017 41202237)~~
关键词 拓扑关系 矢栅一体化数据模型 交叠分量 邻近分量 度量化 topology relation the integrative data model of vector and raster intersect component closeness component metrization
  • 相关文献

参考文献20

  • 1Freeman J. The Modeling of Spatial Relations[J]. Computer Graphics and Image Processing, 1975, 4:156-171.
  • 2Boyle A R, Dangrmond J, Marble D F, et al. Final Report of a Conference on the Review and Synthesis of Problems and Directions for Large Scale Geo- graphic Information System Development[R]. Na- tional Acronauties and Space Administration, USA, 1983.
  • 3Egenhofer M J, Herring J. Categoring Binary To pologieal Relationships Between Regions, Lines, and Points in Geographic Databases[R]. University of Maine, Maine, 1991.
  • 4Egenhofer M J, Franzosa R. Point-Set Topological Spatial Relationships[J]. International Journal of Geographical Information Systems, 1991, 5(2): 161-174.
  • 5Randell D, Cui Z, Cohn A. A Spatial Logical Based on Regions and Connection[C]. The 3rd Interna- tional Conference on Knowledge Representation and Reasoning, New York, 1992.
  • 6Chen J, Li C, Li Z, et al. A Voronoi-Based 9-Inter- section Model for Spatial Relations[J]. Internation- al Journal of Geographical Information Science, 2001, 15 (3): 201-220.
  • 7邓敏,刘文宝,冯学智.GIS面目标间拓扑关系的形式化模型[J].测绘学报,2005,34(1):85-90. 被引量:35
  • 8Shi W, Liu K. A Fuzzy Topology for Computing the Interior, Boundary, and Exterior of Spatial Ob- jects Quantitatively in GIS[J]. Computer & Geosci- ences, 2007, 33:898-915.
  • 9Liu K, Shi W. Quantitative Fuzzy Topological Re- lations of gpatial Obiects by Induced Fuzzy Topolo- gy[J]. International Journal of Applied Earth Observation and Geoin formation , 2009, 11:38-45.
  • 10邓敏,李成名,刘文宝.利用拓扑和度量相结合的方法描述面目标间的空间关系[J].测绘学报,2002,31(2):164-169. 被引量:33

二级参考文献17

  • 1BURROUGH P A, MCDONNELL R A. Principles of Geographical Information Systems [ M]. Oxford: Oxford University Press, 1998.
  • 2COHN A G, GOTTS N M. The 'Egg-Yolk' Representation of Regions with Indeterminate Boundaries [A]. In: Burrough P A and Frank A U (ed), Proceedings of GISDATA-Specialist Meeting on Spatial Objects with Undetermined Boundaries [C]. London:Taylor & Francis, 1996, 171-187.
  • 3LI Zhi-lin, ZHAO Ren-liang, CHEN Jun. An Algebra Model for Spatial Relations [A]. Proceedings of the 3RD ISPRS Workshop on Dynamic and Multi-dimensional GIS [C], Bangkok:[s.n.], 2001, 170-177.
  • 4EGENHOFER M, FRANZOSA R. Point-Set Topological Spatial Relations [J]. International Journal of Geographical Information Systems, 1991, 5 (2):161-174.
  • 5EGENHOFER M, HERRING J. Categoring Binary Topological Relationships between Regions, Lines,and Points in Geographic Databases [R]. Oronoi:Technical report, Department of Surveying Engineering, University of Maine, Oronoi, ME, 1991.
  • 6CLEMENTINI E, DI FELICE P. A Comparison of Methods for Representing Topological Relationships [J]. Information Systems, 1995, 20(3): 149-178.
  • 7CHEN Jun, LI Cheng-ming, LI Zhi-lin, et al. A Voronoi-based 9-intersection Model for Spatial Relations [J]. International Journal of Geographical Information Science, 2001, 15(3): 201-220.
  • 8MUNKRES J R. Topology: A First Course [M].Englewood Cliffs, NJ: Prentice-Hall Inc, 1975.
  • 9CLEMENTINI E, DI FELICE P, OOSTEROM, P.A Small Set for Formal Topological Relationships Suitable for End-User Interaction [A]. In: David Abel,Beng Chin Ooi (ed), Advances in Spatial Databases [C], New York: Springer-Verlag, 1993, 277-295.
  • 10DENG Min. Extended Models on Topological Relations in Vector GISs: Theories and Methods [D].Wuhan: Wuhan University, 2003. (In Chinese)

共引文献85

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部