期刊文献+

旋转圆柱对翼型气动特性影响的数值模拟研究 被引量:9

Numerical simulation on the effects of rotating cylinder on an airfoil
下载PDF
导出
摘要 采用数值模拟的方法研究了旋转圆柱对NACA0015翼型气动特性的影响,着重分析了前缘旋转圆柱转速比和缝隙大小对翼型升阻特性的作用规律以及不同安装位置的高速旋转圆柱结合简单襟翼偏转下的翼型气动力特性。结果表明,高速旋转的圆柱代替翼型前缘可以有效地抑制翼型背风区的流动分离,延缓边界层的发展从而改善翼型气动特性。前缘旋转圆柱理想的转速比在4附近,缝隙在2.5mm至1.5mm之间可以满足使用要求。简单襟翼结合前、后缘高速旋转圆柱情况下翼型的气动力特性可以比拟精心设计的多段翼型。旋转圆柱具有增升减阻效果显著,需要主动输入的能量极少等优点,是一种具有良好应用前景的边界层流动控制技术。 Moving surface boundary layer control technique appears quite promising for en- hancing the airfoils aerodynamics prominently with little energy input. Numerical simulations are conducted on the NACA0015 airfoil with rotating cylinders. The ratio of cylinder surface speed to the freestream speed as well as the gap between the cylinder and the fixed section are analyzed. The results show that the high speed leading-edge rotating cylinder is effective on delaying the flow separation on the upper surface of the airfoil and retarding the boundary-layer development. The proper rotating speed ratio for the cylinder is around 4 and the appropriate gap distance is a- bout 2.5mm to 1.5ram. Moreover, results suggest that, integrated with the high speed leading- edge and trailing-edge rotating cylinders, the aerodynamic performances of the symmetrical airfoil with simple flap can be comparative to those careful designed multi-element airfoils.
出处 《空气动力学学报》 CSCD 北大核心 2015年第2期254-258,共5页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11172240) 航空科学基金(2014ZA53002) 国家重点基础研究发展计划(2009CB219801)
关键词 数值模拟 旋转圆柱 缝隙 襟翼偏转 numerical simulation rotating cylinder gap flap deflection
  • 相关文献

参考文献14

  • 1Modi V J, Sun J L C, Akutsu T, et al. Moving-surface boundary-layer control for aircraft operation at high incidence[J].Journal of Aircraft, 1981, 18(11):963-968.
  • 2Fernando F, Modi V J. Fluid dynamics of airfoils with moving surface boundary-layer control[J].Journal of Aircraft, 1988, 25(2):163-169.
  • 3Modi V J, Mokhtarian F, Fernando M S U K, et al. Moving surface boundary-layer control as applied to two-dimensional airfoils[J].Journal of Aircraft, 1991, 28:104-112.
  • 4Modi V J. Moving surface boundary-layer control:a review[J].Journal of Fluids and Structures, 1997, 11:627-663.
  • 5Modi V J, Munshi S R, Bandyopadhyay G. High-performance airfoil with moving surface boundary-layer control[J].Journal of Aircraft, 1998, 35(4):544-553.
  • 6Modi V J, Triplett B. Moving surface boundary-layer control for aircraft operation at high angles of attack[C]//41st AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada:2003-221.
  • 7Wygnanski I, Seifert A. The control separation by periodic oscillations[C].18th AIAA aerospace ground testing conference. Colorado Springs:94-2068.
  • 8Al-Garni A Z, Ahmed S A, Al-Garni A M, et al. Flow control for an airfoil with leading-edge rotation:an experiment study[J].Journal of Aircraft, 2000, 37(4):617-622.[KG7.3mm] doi:10.2514/2.2673.
  • 9Du X, Lee T. Flow past an airfoil with a leading-edge rotation cylinder[J].Journal of Aircraft, 2002, 39(9):1079-1084.
  • 10Gerontakos P, Lee T. Near wake behind an airfoil with leading-edge flow control[J].Journal of Aircraft, 2005, 42(2):561-567.

二级参考文献11

  • 1Modi V J, Shih E, Ying B. Drag Reduction of Bluff Bodies through Momentum Injection [J]. Journal of Aircraft, 1992, 29(3): 429-436.
  • 2Modi V J, Fernando M, Yokomizo T. Moving Surface Boundary-Layer Control-Studies with Bluff Bodies and Application [J]. AIAA Journal, 1991, 29(9): 1400-1406.
  • 3Modi V J. Moving Surface Boundary-Layer Control: a Review [J]. Journal of Fluids and Structures, 1997, 11(6): 627 663.
  • 4Ahmed Z A, Abdullah M A, Saad A A, et al. Flow Control for an Airfoil with Leading-Edge Rotation: An Experimental Study [J]. Journal of Aircraft, 2000, 37(4): 617- 622.
  • 5Du X, Lee T. Flow Past an Airfoil with a Leading-Edge Rotation Cylinder [J]. Journal of Aircraft, 2002, 39(6): 1079- 1084.
  • 6Menu E, Tavoularis S. Boundary Layer on a Moving Wall [J]. AIAA Journal, 2007, 45(1): 313-316.
  • 7LU Zhiyong. Separation Control for a Strake-Wing by Rotating Cone Placed Near the Leading Edge [R]. AIAA- 2000-521, Aerospace Sciences Meeting and Exhibit, 38th, Reno, NV, 2000.
  • 8HUANG Diangui. Preconditioned Dual-Time Procedures and its Application to Simulating the Flow with Cavitations [J]. Journal of Computational Physics, 2007, 223(2): 685- 689.
  • 9Wolfe W P, Ochs S S. CFD Calculations of S809 Aerodynamic Characteristics [R]. 1997:AIAA-97-0973.
  • 10李锋,计算物理学报,1990年,7卷,4期

共引文献12

同被引文献46

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部