摘要
汽车行驶稳定动力学优化控制,旨在通过确定汽车行驶状态下纵向车速、横摆角速度、质心侧偏角等重要的状态变量,提前预知汽车未来时刻的可能的行驶状态,并将其输送到汽车底盘主动控制系统,实现动力学优化控制,提高汽车的主动安全性,减少道路交通事故。寻找一种低成本、高精度且能够实时获得车辆重要状态参数的方法,是汽车稳定行驶动力学优化控制的关键技术之一。利用Matlab/Simulink仿真工具,分别建立了汽车动力学仿真模型和车辆行驶状态Kalman滤波估计仿真模型,可以同时实现对车辆行驶状态的仿真和对车辆行驶过程中横摆角速度、侧向加速度和质心侧偏角的估计,并且模型具有可扩展性。最后进行了实车场地试验,完成了阶跃曲线、双移线等操作,通过模型仿真、试验数据和状态估计结果的比较得出,三者一致性较好,同时验证了车辆动力学仿真模型和状态估计算法仿真模型的有效性和通用性。
Identification of vehicle driving states with low cost and high accuracy is one of the most important tech- nologies for dynamics optimization control of driving vehicles. By using Matlab/Simulink tool, a vehicle dynamics model and a state estimation model based on Kalman filter technology are established respectively. The yaw rate, lateral acceleration, and side slip angle can be estimated through the model. Step-steer and double-lane-change han- dling maneuvers are carried out during the tests. Through the comparison of the vehicle field test data, state estimation result and the model simulation resuh, a good agreement is found, and the effectiveness and generalized ability of these two models are proved.
出处
《计算机仿真》
CSCD
北大核心
2015年第5期150-155,共6页
Computer Simulation