期刊文献+

水介质中换能器的声场分布建模及仿真 被引量:2

Underwater Sound Field Distribution Simulation of Underwater Acoustic Transducers
下载PDF
导出
摘要 在水声目标探测的优化中,为精确仿真水声换能器在水中的声场传播分布规律,首先利用多元高斯声束叠加模型,建立水声换能器的表面声压分布模型,然后通过频域有限差分法求解KZK传播方程,得到发射声场在水下分布规律和谐波特性,最后通过MATLAB进行数值仿真,得到各阶次谐波在声轴方向上的径向和轴向的分布情况,结果表明谐波阶次越高,波束越窄,声场能量较集中;各阶次谐波在轴向一定位置附近声压达到最大值,之后由于水介质的吸收效应逐渐衰减。上述研究对开展水下探测、非线性声场成像等具有重要的参考价值。 To simulate underwater acoustic transducer in the water sound field distribution accurately, a multivari- ate Gaussian beam superposition model is used to describe the acoustic pressure on the surface of the transducer, the KZK equation is solved with the method of frequency-domain finite difference, and the distribution of emission sound field underwater and harmonic characteristics is obtained. The distribution of each order of harmonics in the acoustic axis of the radial and axial numerical is simulated using MATLAB. The results show that the higher harmonic order with narrower the sound beam, which makes better focused sound field of energy, each order harmonics in the vicinity of the axial position of the sound pressure reaches a certain maximum, after which the aqueous medium due to the ab- sorption effect gradually decaies.
出处 《计算机仿真》 CSCD 北大核心 2015年第5期222-225,261,共5页 Computer Simulation
基金 国家自然科学基金(51105124 51075358 11474259) 浙江省自然科学基金(LQ12E05018) 浙江省公益技术应用研究项目(2014C31109)
关键词 水声工程 多元高斯声束模型 谐波特性 Underwater acoustic Multivariate Gaussian beam model Harmonic characteristics
  • 相关文献

参考文献8

  • 1杨德森,兰朝凤,时胜国,江薇.水中声波非线性相互作用的声吸收声研究[J].振动与冲击,2012,31(8):52-56. 被引量:3
  • 2丁辉.计算超声学[M].北京:科学出版社,2010.
  • 3张波,章东,龚秀芬.利用高斯声束叠加法研究圆形活塞聚焦换能器的非线性声场[J].声学学报,2008,33(5):475-480.
  • 4李宁,雷开卓,黄建国,滕舵,李华.水下冲击波聚焦声场非线性建模与分析[J].系统仿真学报,2011,23(1):61-64. 被引量:3
  • 5P D Fox, Jiqi Cheng, J Y Lu. Fourier-Bessel field calculation and turning of a CW annular array[ J]. Transactions Ultrasonics, Ferro electrics, Frequency Control, 2002,49 (9) : 1179-1190.
  • 6E A Zabloskaya and R V Khoklov. Quasiplane waves in the non- linear acoustics of confined beams [ J ]. Sov. Phys. Acoust, 1969.15:35-40.
  • 7V P Kuznetsov. Equations of nonlinear acoustics [ J]. Sov. Phys. Acoust, 1970,16 : 467-470.
  • 8LiYa-dong, A James. Zagzebski. Computer model for harmonic ultrasound imaging [ J ]. Transactions Ultrasonics, Ferro eIectrics, Frequency Control, 2000,47 ( 4 ) : 1000 - 1013.

二级参考文献15

  • 1章琛曦,张素,张炤,陈亚珠.相控阵聚焦超声消融肿瘤的建模与仿真[J].系统仿真学报,2007,19(1):164-167. 被引量:5
  • 2李金河,赵继波,池家春,张远平,谭多望,王彦平.水中爆炸冲击波传播规律的实验研究[J].高能量密度物理,2007(1):25-28. 被引量:6
  • 3龚秀芬 朱哲民 杜功焕.有限振幅与小振幅平面波的非线性相互作用研究.南京大学学报:自然科学版,1979,3:19-28.
  • 4杜功焕 龚秀芬.在强无规噪声场中有规声能量的抑制.声学学报,1984,9(3):1984-133,129.
  • 5Riemman B. The propagation of plane sound waves of finite amplitude. In: Beyer B T. Nonlinear acoustics in fluids. Brown University, Province Rhode Island, VNR Comp, 1984:42-60.
  • 6Earnshaw S. On the mathematical theory of sound. Phil Trans Roy Soc 1859,8:75-102; In: Lindsay R B. Benchmark paper in acoustics. Acoustics; Historical and Philosophical Development. Brown University. Province Rhode Island, Dowden Hutchinson & Ross, Inc, 29.
  • 7Fenlon F H. An extension of the bessel-fubini series for a mutihle-frequency CW acoustic source of finite amplitude [J]. J Acoust Soc Am, 1972,51(1) :284-289.
  • 8Fenlon F H. A recursive procedure for computing the nonlinear spectral interactions of progressive finite-amplitude waves in nondispersive fluids [C]// J. Acoust. Soc. Am, 1971: 1299-1312.
  • 9ГypБOTOB C H.ПapameτpИЧeckoe BЗaИmoДaeЙcτBИe ИyeИЛehИe cЛyЧaЙHbLX BOЛH B HEДИCПEPГИpyoШeЙ cpeДe[J].Akyct Ж,1980,26(4):551-559.
  • 10ГABPИЛOB A M,CABИЦKИЙ O A. k BoЛpocy OóИcⅡoЛb-ЭФФekta BbipoЖДeHHoroПapametpИЧeckoro ycИЛeHИЯ[J].Akyct.ЖypH,1992,38(4):671-676.

共引文献8

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部