期刊文献+

基于云服务的统计测试非监督故障诊断预测 被引量:1

Statistical Test Based Unsupervised Fault Predicting Approach
下载PDF
导出
摘要 为了对系统中的潜在故障进行有效地预测,提出一种基于统计测试的非监督故障预测方法;首先,将云服务系统定义为运行在相同的软/硬件环境下,具有相同输入数据的并行系统;在数据预处理过程中,对性能计数器中的数据进行标准化,并选取了一定分位数下的计数器数据信息;最后根据具有相同软/硬件环境和输入数据的节点将产生相同的输出这一原则提出了一种统计测试方法用于系统故障的预测;实验表明,文章提出的基于统计测试的故障预测方法与其它相关算法相比,具有预测准确性高和执行效率快等优点。 Predicting faults of a Cloud services system before it fails can win time for system operators and other recovery mechanisms, and thus improve the quality of services. In order to predicting the latent faults efficiently for such systems, this paper proposed a statistical test based unsupervised fault predicting approach. First, we defined the Cloud service system as a parallel system running in the same soft ware and hardware environment, and with the same input data. During the process of data preprocessing, we normalized the data in perform- ance counters, and chose a subset under some percentile. Finally, according to the principle of nodes with the same software/hardware envi- ronment and input data had the same output, we proposed a statistical test approach for predicting the fault. The experiments show that, the proposed fault predicting approach based on statistical test has better accuracy and quicker execution time compared with other related resear- ches.
作者 林楠 魏涛
出处 《计算机测量与控制》 2015年第5期1457-1459,1463,共4页 Computer Measurement &Control
基金 国家科技型中小企业技术创新基金项目(10C26214102198)
关键词 云服务 故障诊断 故障预测 统计测试 cloud services fault diagnosis fault prediction statistical test
  • 相关文献

参考文献14

  • 1史佩昌,王怀民,尹刚,刘雪宁,袁小群,史殿习.云服务传递网络资源动态分配模型[J].计算机学报,2011,34(12):2305-2318. 被引量:10
  • 2Sun D, Chang G, Miao C, et al. Modelling and Evaluating a High Serviceability Fault Tolerance Strategy in Cloud Computing Envi- ronments [J]. Int. J. Secur. Netw. , 2012, 7 (2): 196-210.
  • 3Nguyen T A N, Desideri J, Resilience for Collaborative Applications on Clouds: Fault - tolerance for Distributed HPC Applications [A]. in ICCSA'12 [C]. Berlin, Heidelberg, 2012: 418-433.
  • 4Yilmaz C. Using Hardware Performance Counters for Fault Locali- zation [A]. in VALID'10 EC]. Washington, DC, USA, 2010: 87 -92.
  • 5Yadav S K, Kalra P K, Automatic Fault Diagnosis of Internal Combustion Engine Based on Spectrogram and Artificial Neural Network [A]. in ROCOM'10 [C]. Stevens Point, Wisconsin, USA, 2010: 101 - 107.
  • 6马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272-276. 被引量:78
  • 7Ligeza A, Koscielny J. A New Approach to Multiple Fault Diagno- sis: A Combination of Diagnostic Matrices, Graphs, Algebraic and Rule-Based Models. The Case of Two-Layer Models [J]. Int. J. Appl. Math. Comput. Sci., 2008, 18 (3): 465-476.
  • 8Tan S C, Lim C P, Rao M V C. A Hybrid Neural Network Model for Rule Generation and Its Application to Process Fault Detection and Diagnosis[J]. Eng. Appl. ArtiL Intell., 2007, 20 (3): 203- 213.
  • 9Wang M, Hu N, Qin G. A Method for Rule Extraction Based on Granular Computing: Application in the Fault Diagnosis of a Heli-copter Transmission System [J]. J. Intell. Robotics Syst. , 2013, 71 (4): 445 - 455.
  • 10Wang B, Cao W, Ma L, et al, Fault Diagnosis Approach Based on Qualitative Model of Signed Directed Graph and Reasoning Rules [A]. in FSKD'05 [C]. Berlin, Heidelberg, 2005: 339-343.

二级参考文献28

  • 1耿遵敏,宋孔杰,李兆前,张兴华,万德玉.关于柴油机振声特点及动态诊断方法的研究与讨论[J].内燃机学报,1995,13(2):140-147. 被引量:32
  • 2马笑潇.智能故障诊断中的机器学习新理论及其应用[D].重庆:重庆大学,2002.
  • 3Armbrust M, Fox A, Griffith R, Joseph R D, Katz R, Kon winski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M. A view of cloud computing. Communications of the ACM 2010, 53(5):862-876.
  • 4Yin H, Liu X N, Min G Y, Lin C. Content delivery net- works : A bridge between emerging applications and future IP networks. IEEE Network Magazine, 2010, 24(4): 52-56.
  • 5Nygren E, Sitaraman R K, Sun J. The Akamai network: A platform for high-performance internet applications. ACM SIGOPS Operating Systems Review, 2010, 44(3): 2-19.
  • 6Albanese F, Carra D, Michiardi P, Bestavros A. Cloud- based content distribution on a budget. Boston University, Boston: Teehnieal Report BUCS-TR-2010 022, 2010.
  • 7Wendell P, Jiang J W, Freedman M J, Rexford J. DONAR deeentralized server selection for cloud services//Proeeedings of the SIGCOMM. New Delhi, India, 2010:231-242.
  • 8Li B, Deng X, Go L M, Sohraby K. On the optimal place- ment of web proxies in the internet: Linertopology//Proceedings of the 8th IFIP Conference on High Performance Networking. Networking. Vienna, Austria, 1998:485 495.
  • 9Qiu L L, Padmanabhan N V, Voelker G M. On the placement of web server replicas//Proceedings of the IEEE INFO- COM. Alaska, USA, 2001:1587-1596.
  • 10Wang Z, Jiang H, Sun Y, Li J, Liu J, Eryk D. A K-coordinated decentralized replica placement aIgorithm//Proceedings of the ISCC. Riccione, Italy, 2010:811-816.

共引文献86

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部