期刊文献+

微小型四旋翼无人机自主着陆视觉系统研究 被引量:4

Vision System for Autonomous Landing of a Micro four rotor UAV
下载PDF
导出
摘要 以实现微小型四旋翼无人机依靠视觉信息完成自主着陆为目的,采用TI公司DM3730芯片作为核心处理器,构建一套自主着陆视觉导引信息处理系统;充分考虑了视觉系统的特点,选用小巧、便携、合理的实验硬件,通过对图像的前期处理,采用相对简单的视觉处理算法,识别出着陆标识,通过解算得到着陆信息并完成飞行器的自主着陆过程;实验结果表明,系统较为可靠,在常规条件下,该系统能够有效识别人工着陆标识,准确解算出着陆标识与飞行器的相对位置信息用于自主着陆导引。 In order to complete micro four rotor UAVs autonomous larlding based on visual informa-tion for the purpose of, a vision--based guidance system is developed, which takes advantage of the DM3730 dual--core processor produced by TI company. Consider the char- acteristics of the visual system, we select portable and reasonable hardwares, through the pre--processing on the image, using a relatively simple visual processing algorithm, identify the landing mark and calculate the information to complete aircraft autonomous landing. The ex- perimental results show that system is reliable, under normal conditions, the system can effectively identify manual landing mark, calculate the relative position information of landing mark and aircraft for autonomous landing guidance.
出处 《计算机测量与控制》 2015年第5期1682-1685,共4页 Computer Measurement &Control
基金 国家自然科学基金(61374116)
关键词 DM3730 自主着陆 视觉导引 微小型四旋翼 DM3730 autonomous landings visual guidance miniature quadrotor
  • 相关文献

参考文献8

  • 1李谷全,陈忠泽.视觉跟踪技术研究现状及其展望[J].计算机应用研究,2010,27(8):2814-2821. 被引量:17
  • 2韩雪岭,李成贵.基于机器视觉的发动机喷嘴检测系统的设计[J].计算机测量与控制,2012,20(6):1455-1457. 被引量:7
  • 3Zeng F, Shi H Q, Wang H. The object recognition and adaptive threshold selection in the vision system for landing an unmanned aerial vehicle [A]. International Conference on Information and Automation [C]. Zhuhai, China, 2009: 117-122.
  • 4Saripalli S, Montgomery J F, Sukhatme G S. Vision-based auton- omous landing of an unmanned aerial vehicle [A]. IEEE International Con{erence on Robotics and Automation [C]. Washington. DC, USA, 2002: 2799-2804.
  • 5Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle [A]. IEEE International Conference on Robotics and Automation [C]. SeouI, Korea, 2001, 2:1720 - 1727.
  • 6Hubbardl D, Morsel B. Performance Evaluation of Vision-Based Navigation and Landing on a Rotorcraft Unmanned Aerial Vehicle [-A3. IEEE Workshop on Applications of Computer Vision (WACV'07) [C]. 2007, 0-7695-2794-9/07.
  • 7Michael H Schimek, Bill Dirks, Hans Verkuil, and Martin Rubli., Video for Linux Two API Specification [Z].
  • 8Flusser J, Suk T. Pattern recognition by affine moment invariants [J]. Pattern Recognition, 1993, 26 (1) : 167 - 174.

二级参考文献110

  • 1朱明,鲁剑锋.基于DSP+FPGA结构图像处理系统设计与实现[J].计算机测量与控制,2004,12(9):866-869. 被引量:19
  • 2李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 5IKEDA Hiroyasu,HAMAJIMA Kyoko.A Hybrid Vision Method for Autonomous Guided Vehicle Navigation[J].自动化学报,2006,32(6):988-998. 被引量:1
  • 6MATUSEK F,SUTOR S,KRAUS K,et al.NIVSS:a nearly indestructible video surveillance system[C] //Proc of the 3rd International Conference on Internet Monitoring and Protection.Washington DC:IEEE Computer Society,2008:98-102.
  • 7LIU Zhi-fang,YOU Zhi-sheng.A real-time vision-based vehicle tracking and traffic surveillance[C] //Proc of the 8th ACIS International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing.2007:174-179.
  • 8AGGARWAL J K,NANDHAKUMAR N.On the computation of motion from sequences of images:a review[C] //Proceedings of the IEEE,1988,76(8):917-935.
  • 9COIFMAN B,BEYMER D,MCLAUCHLAN P.A real-time compu-ter vision system for vehicle tracking and traffic surveillance[J].Transportation Research Part C:Emerging Technologies,1998,6(4):271-288.
  • 10MEYER F G,BOUTHEMY P.Region-based tracking using affine motion models in long image sequences[J].CVGIP:Image Understanding,1994,60(2):119-140.

共引文献22

同被引文献22

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部