期刊文献+

针对光照变化的人脸识别算法研究 被引量:4

Study on face recognition algorithm against illumination change
下载PDF
导出
摘要 为了增强人脸识别对光照变化的鲁棒性,提出了一种融合多方法的人脸图像光照预处理算法。该算法首先根据改进的自适应平滑算法(IAS)估计出原图像的亮度分量L,再用Retinex算法求得反射分量R,同时对原图像进行局部对比度增强(LCE)处理来增强图像细节;然后采用基于标准差(SD)的加权方法将多种方法有效融合起来;最后采用基于稀疏表示的分类(SRC)算法进行判别归类。在Yale B人脸库上的实验表明,构造的算法识别率高于使用单一预处理算法,而且在训练样本单一、光照环境较差情况下也能取得很好的识别效果,对光照变化有较好的鲁棒性。 In order to enhance the robustness of face recognition to illumination change, an illumination preprocessing algorithm of face image with fusing several algorithms is proposed. Firstly, the luminance component L is estimated from the original image according to the improved adaptive smoothing (IAS) algorithm, then reflection components R is obtained using Retinex algorithm. At the same time, the local contrast enhancement (LCE) algorithm is used to enhance image details. And the reweighted method based on the standard deviation (SD) is also adopted to calculate the weight and combine several algorithms effectively. Finally, sparse representation based classification(SRC) is used to classify. The experiment results on the Yale B face databases show that the pro- posed algorithm has higher recognition rate than the single pretreatment algorithm, and in the single training sample and poor light- ing condition, this method can also achieve good recognition result, and has better robustness to illumination change.
出处 《电子技术应用》 北大核心 2015年第5期152-155,共4页 Application of Electronic Technique
基金 广西自然科学基金项目(2014GXNSFDA118035 2013GXNSFAA019331) 桂林电子科技大学研究生教育创新计划资助项目(GDYCSZ201462)
关键词 人脸识别 稀疏表示 自适应平滑 局部对比增强 标准差 face recognition sparse representation adaptive smoothing local contrast enhancement standard deviation
  • 相关文献

参考文献10

  • 1LUAN X, FANG B,LIU L,et al.Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion[J].Pattern Recognition, 2014,47(2) : 495 -508.
  • 2YANG M,ZHANG L, SHIU S C K,et al.Gabor feature based robust representation and classification for face recog nition with Gabor occlusion dictionary[J].Pattern Recognition, 2013,46(7) : 1865-1878.
  • 3YANG M, ZHANG L, YANG J, et al.Regularized robust coding for face recognition[J].Image Processing, IEEE Transactions on, 2013,22(5) : 1753-1766.
  • 4HE R,ZHENG W S, HU B G, et al.Two-stage nonnegative sparse representation for large-scale face recognition[J]. Neural Networks and Learning Systems, IEEE Transactions on, 2013,24( 1 ) : 35-46.
  • 5RAMIREZ-GUTIERREZ K, CRUZ-PEREZ D, OLIVARES- MERCADO J, et al.A face recognition algorithm using eigenphases and histogram equalization[J].International Journal of Computers, 2011 , 5(1) : 34-41.
  • 6KARANDE K J,TALBAR S N.Independent component analysis of edge information for face recognition[M]. Springer, 2014.
  • 7WU F.Face recognition based on wavelet transform and regional directional weighted local binary pattern[J].Joumal of Multimedia, 2014,9(8) : 1017-1023.
  • 8LI Y, MENG L, FENG J.Face illumination compensation dictionary [ J ]. Neurocomputing, 2013 ( 101 ) : 139 - 148.
  • 9BIGLARI M,MIRZAEI F,EBRAHIMPOUR-KOMEH H. Illumination invariant face recognition using SQI and weighted LBP histogram[C].Pattem Recognition and Image Analysis(PRIA),2013 First Iranian Conference on.IEEE, 2013 : 1-7.
  • 10葛微,李桂菊,程宇奇,薛陈,朱明.利用改进的Retinex进行人脸图像光照处理[J].光学精密工程,2010,18(4):1011-1020. 被引量:46

二级参考文献19

  • 1王彦臣,李树杰,黄廉卿.基于多尺度Retinex的数字X光图像增强方法研究[J].光学精密工程,2006,14(1):70-76. 被引量:47
  • 2RAVI R.Analytic pca construction for theoretical analysis of lighting variability in images of a lambertian object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(10):1322-1333.
  • 3RONEN BRASRI,DAVID JACOBS.Lambertian reflectance and linear subspaces[C].NEC Research Institute Technical Report.2002.
  • 4ATHINODOROS S,PETER N.Illumination cone models for recognition under variable lighting:faces[C].IEEE Conf.on CVPR,1998:52-59.
  • 5GEORGHIADES A S,BELHUMEUR P N,KRIEGMAN D J.From few to many:illumination cone models for facerecognition under differing pose and lighting[J].IEEE Trans.On PAMI,2001,23(6):643-660.
  • 6SHAN S,GAO W,CAO B,et al..Illumination normalization for robust face recognition against varying lighting conditions[C].Procedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures,2003:157-164.
  • 7XIE X D,LAM K M.Face recognition under varing illumination based on a 2D face shape model[J].Pattern Recognition,2005,38(2):221-230.
  • 8GAO Y,LEUNG M K H.Face recognition using line edge map[J].IEEE Trans.On PAMI,2002,24(6):764-779.
  • 9LIU D H,LAM K M,SHEN L S.Illumination invariant face recognition[J].Pattern Recognition,2005,38:1705-1716.
  • 10YOUNG K P,SEOK L P,JOONG K K.Retinex method based on adaptive smoothing for illumination invariant face recognition[J].Signal Processing,2008,88:1929-1945.

共引文献45

同被引文献43

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部