期刊文献+

PEG介导番木瓜叶肉原生质体瞬时表达体系的建立 被引量:4

Establishment of Gene Transient Expression System Mediated by Polyethylene Glycol in Carica papaya L. Mesophyll Protoplasts
原文传递
导出
摘要 本研究对聚乙二醇(polyethylene glycol,PEG)的分子量、浓度及处理时间等三个影响番木瓜叶肉原生质体转化效率的主要因素进行了优化,同时利用绿色荧光蛋白(green fluorescent protein,GFP)表达体系进行了转化表达分析。结果表明:经40%PEG8000溶液处理10 min,可使GFP在原生质体中的平均转化率达到45.26%;沉默抑制载体p Green-Hcpro和GFP瞬时表达载体共转化番木瓜叶肉原生质体,可使GFP在原生质体中的平均转化率进一步提高到68.75%,相比单独转化瞬时表达载体p RNAi-GFP增长了51.90%。PEG介导番木瓜叶肉原生质体瞬时表达体系的建立为番木瓜功能基因组和基因功能研究奠定了基础,可为热带作物的研究提供又一模式作物,推动热带作物在分子及细胞生物学领域的发展。 The polyethylene glycol (PEG) molecular weights, PEG concentration and treatment time were three important factors that influenced the transformation efficiency in transient expression system mediated by PEG in papaya mesophyll protoplasts. A high average transfection efficiency (45.26%) of GFP was obtained when processing samples 10 minutes with 40%PEG8000 solution. In addition, the silence suppression vector of pGreen-Hcpro was successfully constructed. And a higher average transfection efficiency (68.75%) of GFP was obtained when pGreen-Hcpro were co-transformed with the transient expression vector of GFP into the protoplasts. As a result, the transformation efficiency of the co-transformation with GFP and pGreen-Hcpro increased by 51.90% compared with the single transformation. the PEG mediated papaya mesophyll protoplast transient expression system was successfully established, and this study provide the basis for gene silencing suppressor applied in plant bioreactor. And the research may offer a model plant for the study of tropical crops, which would promote the development of tropical crops in molecular and cell biology field.
出处 《分子植物育种》 CAS CSCD 北大核心 2015年第4期808-815,共8页 Molecular Plant Breeding
基金 国家自然科学基金(31171822 31301639)资助
关键词 番木瓜 原生质体 PEG 瞬时表达 Carica papaya L., Protoplast, PEG, Transient expression
  • 相关文献

参考文献25

  • 1Anandalakshmi R., Pruss G.J., Ge X., Marathe R., Mallory A.C.,Smith T.H., and Vance V.B., 1998, A viral suppressor of gene silencing in plants, Proc. Natl. Acad. Sci. USA, 95(22): 13079-13084.
  • 2Ananthakrishnan G., Orbovic V., Pasquali G., Calovic M., and Grosser J.W., 2007, Transfer of citrus tristeza virus (CTV)- derived resistance candidate sequences to four grapefruit cultivars through ogrobacterium-mediated genetic transfor- mation, In Vitro Cell. Dev. Biology-Plant, 43(6): 593-601.
  • 3Davey M.R., Anthony P., Power J.B., and Lowe K.C., 2005, Plant protoplasts: status and biotechnological perspectives, Biotechnol. Adv., 23 (2): 131 - 171.
  • 4Hahn-Hagerdal B., Hosono K., Zaehrisson A., and Bonaman C.H., 1986, Polyethylene glycol and electric field treatment of plant protoplasts: characterization of some membrane prop- erties, Physiol. Plantarttm, 67(3): 359-364.
  • 5Jiang L., Wang J., Liu Z., Wang L., Zhang F., Liu G.C., and Zhong Q., 2010, Silencing induced by inverted repeat con- structs in protoplasts of Nicotiana benthamiana, Plant Cell, Tissue and Organ Culture, 100(2): 139-148.
  • 6金太成,张奇,赵卓,杨丽萍.利用RNA沉默抑制子HC-Pro提高基因表达的策略[J].农业生物技术学报,2014,22(7):870-875. 被引量:4
  • 7Lazzeri P.A., Brettschneider R., Luhrs R., Lorz H., and Lorz H., 1991, Stable transfor-mation of barley via PEG-induced di- rect DNA uptake into protoplasts, Theor. Appl. Genet., 81 (4): 437-444.
  • 8李妮娜,丁林云,张志远,郭旺珍.棉花叶肉原生质体分离及目标基因瞬时表达体系的建立[J].作物学报,2014,40(2):231-239. 被引量:30
  • 9李文彬,孙勇如,王革娇,SalaF,StanchinaE,Castiglione.PEG介导原生质体转化获得水稻转基因植株[J].Acta Botanica Sinica,1995,37(5):409-412. 被引量:8
  • 10Lis J.T., 1980, Fractionation of DNA fragments by polyethylene glycol induced precipitation, Methods Enzymol., 65 (1): 347-353.

二级参考文献77

共引文献53

同被引文献82

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部