期刊文献+

808nm大功率激光二极管随机失效分析 被引量:2

Random Failure Analysis of the 808nm High Power Laser Diode
下载PDF
导出
摘要 对10只808nm大功率激光二极管进行室温恒电流老化,4只器件出现随机失效。采用高倍显微镜、激光扫描共焦显微镜和扫描电子显微镜(SEM)等方法对失效器件的近场光斑、腔面形貌、p面形貌及谐振腔截面形貌等进行了观察分析。在失效样品的芯片腔面或内部发现了不同程度的晶体熔毁缺陷,并且发现激光二极管功率衰减幅度与熔毁缺陷的位置及严重程度有关,确认芯片有源区的晶体熔毁缺陷是导致808nm大功率激光二极管随机失效的主要模式。分析认为材料生长过程的晶体缺陷、芯片制作过程中引入的损伤粘污缺陷以及封装过程中引入的损伤缺陷可能是晶体熔毁缺陷产生的最初原因。某些缺陷在加电老化过程中不断生长变大,造成谐振腔内损耗增加,激光二极管输出功率降低;同时谐振腔内光损耗导致芯片局部温度升高,加速缺陷生长变大。这种反馈过程使缺陷生长加速,在相对较短的时间内形成大面积晶体熔毁,导致激光二极管灾变失效。提高大功率激光二极管可靠性的根本方法是降低芯片制造过程引入的缺陷,同时严格控制封装散热以及封装应力。 The 808 nm high power laser diodes were burned-in with a constant pumping current at room temperature, the random failure occurred for 4 out of 10 diodes during the process. The near field spot, cavity facet morphology, p-side morphology and cavity cross section morphology were detected and analyzed using the high power microscope, laser scanning confocal microscope and scanning electron microscope (SEM). The different degree melt-down defects were found either on the facet or in the cavity, and it was found that the power attenuation amplitudes of the laser diodes were related to the position and degree of the meltdown defects, indicating the crystal meltdown defects in the active region of the chip to be the primary random failure mode of the 808 nm high power laser diodes. The analysis indicates that the crystal defects in the material growth process, damages and contaminations induced in the manufacturing process and damages induced in the packaging procedure are the origins of the meltdown defects for the crystal. Besides, some defects above grow large during the burned-in process, and cause the increase of the cavity loss and the decrease of the diode output power. Meanwhile the optical loss in the resonant cavity leads to the increment of the local region temperature of the chip and the enlargement of the defects, and the feedback process makes the defects grow large. The large area crystal meltdown occurring in a relative short period of time leads to the catastrophic failure of the laser diode. Reducing the defects introduced in the manufacturing process and strictly controlling the heat dissipation and stress of the packaging were considered as the basic methods to improve the reliability of the high power laser diodes.
出处 《微纳电子技术》 CAS 北大核心 2015年第5期273-277,303,共6页 Micronanoelectronic Technology
关键词 大功率激光二极管 随机失效 熔毁缺陷 功率衰减 灾变失效 high power laser diode random failure meltdown defect power degradation catastrophic failure
  • 相关文献

参考文献7

  • 1李晨,刘英斌,宋雪云.高效率高亮度半导体激光器技术进展[J].半导体技术,2008,33(9):748-751. 被引量:11
  • 2HAYASHI I. Degradation in I]I-V opto-electronic devices [J]. J Phys Soc Japan, 1980, 49 (Suppl) : 57 - 65.
  • 3YELI.EN S I., SHEPARD A H, DALLBY R J, et al. Relia- bility of GaAs-hased semiconductor lasers El. 6 - 1. 1 ~.m [J]. IEEE J Quantum Electron, 1993, 29 (6) : 21158 - 21167.
  • 4TANG W C, ROSEN H J, VETTIGER P, e~ al. Evidence for current-density induced heating of AIGaAs single-quantum-well laser facets [-J']. Appl Phys Lett, 1991, 59 (6) : 1005 - 111117.
  • 5LAMBERT R W, AYI.INC- T, HENDRY A F, et al. Facet- passivation processes for the improvement of Al-containing semiconductor laser diodes [J]. Journal of Lightwave Techno- logy, 2006, 24 (2): 956-961.
  • 6CHAVAN A, RADIONOVA R, CHARACHE G W, et al. Com- parian of facet temperature and degradation of unpumped and passivated facets of Al-free 940-nm lasers using photol[J]. IEEE J Quantum Electron, 2005, 41 (5): 63()-635.
  • 7XIA R, LARKINS E C, HARRISON I, et al. Mounting- induced strain threshold for the degradation of high-power AIGaAs laser bars [J]. IEEE Photonics Technology Letters, 21102, 14 (7): 893-895.

二级参考文献14

  • 1HUANG R K,MISSAGGIA L J,DONNELLY J P,et al. High- brightness slab-coupled optical waveguide laser arrays [ J ]. Photonics Technology Letters,2005,17(5) :959-961.
  • 2MISSAGGIA L J, HUANG R K, CHANN B, et al. High- power, slab-coupled optical waveguide laser array packaging for beam combining[ J ] . Proc of SPIE, 2007,6478 : 647806.
  • 3MIKULLA M,SCHMITr A.25 W CW high-brightness tapered semiconductor laser-array [ J ]. IEEE Photonics Technology Letters, 1999,11 (4) :412-414.
  • 4SCHOENFELDER A, DEMARS S D, LANG R J. Narrow- linewidth high-brightness laser diodes arrays[J]. Digest of the IEEE/LEOS Summer Topical Meetings, 1997 : 72-73.
  • 5PASCHKE K, BOGATOV A. Modeling and measurements of the radiative characteristics of high-power a-DFB lasers [J]. IEEE J on Selected Topics in QE,2003,9(3):835-843.
  • 6WILLIAMSON R.SHEDS leaves high-power legacy[EB/OL]. [2007-06 ] http://compoundsemiconductor. net/cws/sign-up;jsessionid.
  • 7KANSKAR M, EARLES T. 73% CW power conversion efficiency at 50 W from 970 nm diode laser bars [ J ]. E L, 2005,41 (5) : 226-227.
  • 8LIU G T,STINTZ A,LI H,et al.The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures[J]. IEEE of QE,2000,36 ( 11 ) : 1272-1279.
  • 9DELIGEORGIS G, DIALYNAS G. Reduced threshold current in ( 111 ) B grown InGaAs/AIGaAs laser diodes: the positive role of piezoelectric effect [ J ]. APL, 2007,90:121126.
  • 10VOLODIN B L, DOLGY S V. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings [ J ]. Optics Letter, 2004,29(16) : 1891-1893.

共引文献10

同被引文献32

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部