期刊文献+

基于局部模型匹配的几何活动轮廓跟踪 被引量:4

Geometric active contour tracking based on locally model matching
原文传递
导出
摘要 目的在复杂背景下,传统轮廓跟踪方法只考虑了目标的整体特征或显著性特征,没有充分利用目标的局部特征信息,尤其是目标发生遮挡时,容易发生跟踪漂移,甚至丢失目标。针对上述问题,提出一种基于局部模型匹配的几何活动轮廓(LM-GAC)跟踪算法。方法首先,利用超像素技术将图像中的颜色特征相似的像素点归为一类,形成由一些像素点组成的超像素,从而把目标分割成若干个超像素块,再结合EMD(earth mover's distance)相似性度量构建局部特征模型。然后,进行局部模型匹配,引入噪声模型来估算局部模型参数θ,这样可以增强特征模型的自适应性,提高局部模型匹配的准确性。最后,结合粒子滤波的水平集分割方法提取目标轮廓,实现目标轮廓精确跟踪。结果本文算法与多种目标轮廓跟踪算法进行对比,在部分遮挡、目标形变、光照变化、复杂背景等条件的基准图像序列均具有较高的跟踪成功率,平均成功率为79.6%。结论实验结果表明,根据不同的图像序列,可以自适应地实时改变噪声模型参数和粒子的权重,使得本文算法具有较高的准确性和鲁棒性。特别是在复杂的背景下,算法能较准确地进行目标轮廓跟踪。 Objective Majority of traditional contour tracking methods only consider the overall characteristics or significant features of the moving target under a complex background, which figure out contour tracking without fully utilizing the moving target's locally feature information. When the moving target is occluded, most traditional tracking methods make these moving target easily drift, which sometimes result in the loss of the moving target. Focusing on these problems, tracking al- gorithm based on locally model matching of geometric active contour (LM-GAC) is proposed. Method Super-pixels make these similar color characteristics of pixels in the image as a class ; thus, a plurality of pixels is composed of super-pixels. Super-pixels divide the moving target into a plurality of pixel blocks. The super-pixel is combined with the EMD (earth mover's distance) similarity measure to build locally feature model. Carrying on locally model matching, a noise model is then introduced to estimate the local model parameter θ, which can enhance the adaptiveness of the features model and the accuracy of the locally model matching. Finally, the level set segmentation method is combined with particle filter to extract the moving target contours to track moving target contours accurately. Result Compared with other moving target contour tracking methods, the proposed moving target tracking method maintains a higher success rate on image sequences that were under the conditions of partial occlusion, target deformation, illumination changes, and complex background. The proposed moving target tracking method, which has an average Success rate reaching 79. 6% , is relatively accurate and stable. Conclusion Experiment results indicate that the proposed moving target tracking algorithm can modify noise model parameters and particles heavy adaptively in real timedepending on the image sequence, so the proposed moving target tracking algorithm has higher accuracy and robustness. Under complex backgrounds, the proposed moving target tracking algorithm can track the moving target contour more accurately.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第5期652-663,共12页 Journal of Image and Graphics
基金 国家自然科学基金项目(61172144) 辽宁省科技攻关计划项目(2012216026)
关键词 局部模型 超像素 EMD相似性度量 噪声模型 水平集 local model super-pixel EMD similarity measure noise model level set
  • 相关文献

参考文献20

  • 1Zhang K,Somh H. Real-time visual tracking via online weighted multiple instance learning [ J ]. Pattern Recognition, 2013. 46(1 ) :397-411.
  • 2Ganta R R, Zaheeruddin S, Baddiri N. Segmenlatiun of oil spill images with illumination-reflectance based adaptive level set mo- del [ J ]. IEEE Journal of Selected Topics in Applied Earth Obser- vations and Remote Sensing, 2012, 5 ( 5 ) : 1394-1402. [ DOI: 10. 1109/JSTARS. 2012. 2201249 ].
  • 3Wu J W, Hu S. 3D object tracking using meanishift and similari- ty-based aspect-graph modeling[ C ]// The 33rd Annual Confer- ence of the IEEE Industrial Electronics Society. Taipei China: IEEE, 2007,5(8): 2383-2388.
  • 4Mukherjee D P, Acton S T. Affine and projective active contour models[ J]. Pattern Recognition, 2007, 40(3): 920-930.
  • 5Cavallavo A, Steiger O, Ebrahimi T. Tracking video objects in cluttered background[ J ]. IEEE Transactions on Circuits Systems for Video Technology, 2005,15(4) : 575-584.
  • 6Rathi Y, Vaswani N, Tannenbaum A. A generic framework for tracking using particle filter with dynamic shape prior[ J ]. IEEE Transactions on Image Processing, 2007, 16(5) :1370-1382.
  • 7Freedmau D, Zhang T. Active contours for tracking distrtmtions [J]. IEEE Transactions on Image Processing, 2004, 13(4): 518-526.
  • 8Zhang T, Freedman D. Improving performance of distribution tracking through background matching[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 2 ) : 282- 287.
  • 9Wu Y W, Ma B. Learning distribution metric for object contour tracking[ C]//Proceedings of International Conference on Multi- media Technology. Hangzhou: IEEE, 201113120-3123. [DOI: 10. 1109/ICMT. 2011. 6001851 ].
  • 10Ning J F, Zhang L, Zhang D. Joint registration and active con- tour segmentation for object tracking [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2013,23 (9) :1589- 1597.

二级参考文献41

  • 1彭云辉,缪栋,刘冬,杨小冈.UPF算法在状态估计中的应用[J].微电子学与计算机,2006,23(11):41-43. 被引量:3
  • 2Matthews I, Ishikawa T, Baker S. The template update problem [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2004, 26(6) :810-815.[ DOI: 10. 1109/TPAMI. 2004. 16].
  • 3Piccardi M, Cheng E D. Track matching over disjoint camera views based on an incremental major color spectrum histogram [ C]//Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance. New York : IEEE, Computer Society, 2006 : 147-152.
  • 4Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25 (5) :564-577. [DOI: 10. 1109/TPAMI. 2003. 1195991].
  • 5Porikli F, Tuzel O, Meer P. Covariance tracking using model up- date based on lie algebra [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York : Institute of Electrical and Electronics Engineers Com- puter Society, 2006 : 728-735.
  • 6Avidan S. Support vector tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8) :1064-1072. [ DOI: 10.1109/TPAMI. 2004.53 ].
  • 7Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE Computer Society, 2009 : 983-990.
  • 8Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking [ C ]//Proceedings of the 10th Euro- pean Conference on Computer Vision. Marseille: Springer Ver- lag, 2008: 234-247.
  • 9Xue M, Ling H. Robust visual tracking using L1 minimization [ C ]//Proceedings of the 12th International Conference on Com- puter Vision. Kyoto: Springer Verlag, 2009: 1436-1443.
  • 10Bao C H, Wu Y, Ji H. Real time robust 11 tracker using acceler- ated proximal gradient approach [ C ]//Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition. Provi- dence,RI, USA: IEEE Computer Society, 2012: 1830-1837.

共引文献17

同被引文献30

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部