期刊文献+

阵列数据库系统的存储块分割策略研究 被引量:1

The research of chunk segmentation strategy for array database system
下载PDF
导出
摘要 阵列数据库系统是存储和分析大规模科学数据的常用技术方案。目前主流的阵列数据库中存储块分割策略采用固定边长作为块的边界,若边长过大会增加查询分析时定位Cell的时间,反之则产生过多的小块增加内存开销。本文提出一种改进的Chunk边长分割算法CLD,其通过减少读取数据时的磁道数以及预取技术提高阵列数据库系统的性能。在阵列数据库系统Sci DB集群上的实验表明,在最优情况下系统性能提升了10.9%。 Array database is often used for massive scientific data storage and analysis. The major array database systems primarily employ the fixed length strategy for chunk segmentation. If the length of the chunk is too big, it will increase the overhead of cell location during query analysis. On the contrary, it will make too many small chunks and increase the memory overhead. This paper proposed a chunk length divide(CLD) algorithm to improve the performance of array database by reducing the number of track and prefetching technique when the data is read. Based on the evaluation of array database SciDB cluster, our approach lead the performance of SciDB improved about 10.9% under the optimal conditions.
出处 《微型机与应用》 2015年第9期26-28,31,共4页 Microcomputer & Its Applications
基金 国家自然科学基金(61462012) 贵州省应用基础研究重大项目子课题(黔科合JZ字[2014]2001-05) 贵州大学研究生创新基金(研理工2014010)
关键词 阵列数据库 存储块分割 查询分析 array database storage chunk query analysis
  • 相关文献

参考文献8

  • 1HEY T, TANSLEY S, TOLLE K. The fourth paradigm: da- ta-intensive scientific discoveries [J]. Microsoft Research, 2009( 1 ) : 153-164.
  • 2GRAY J, LIU T D, DEWITI" D, et al. Scientific data man- agement in the coming decade[R]. 2005.
  • 3STONEBRAKER M, BECLA J, DEWITr D, et al. Require- ments for science data bases and SciDB [C]. Conference on Innovative Data Systems Research(CIDR)Perspeetives, 2009: 7-16.
  • 4CUDRE-MAUROUX P, KIMURA H, CUDRE-MAUROUXet al. A demonstration of SciDB: a science-oriented DBMS[C]. VLDB, 2009,1534-1537.
  • 5STONEBRAKER M, BROWN P, POLIAKOV A, et al. The architecture of SciDB [C]. Scientific and Statistical Database Management (SSDBM), 2011 : 1-16.
  • 6CHANG C, ACHARYA A, SUSSMAN A,et al. T2: a cus- tomizable parallel database for multi-dimensional data [C]. Proceedings of ACM SIGMOD Record, 1998:58-66.
  • 7STONEBRAKER M, BEAR C, CETINTEMEL U, et al. Zdonik: one size fits all? Part 2: benchmarking studies[C]. CIDR, 2007: 173-184.
  • 8CUDRE-MAUROUX P, KIMURA H, LIM K-T, et al. SS- DB: a standard science DBMS benchmark[R/OL]. (2012-08) [2015-03-05] http ://www.xldb.org/science-benchmark/.

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部