期刊文献+

大气环境中双股自击式喷嘴雾化液滴的运动特性

Motion Properties of Spray Particles from Impinging Nozzle at Atmospheric Environment
下载PDF
导出
摘要 为了研究大气环境中双股自击式喷嘴雾化液滴的运动特性,设计了双股自击式射流喷雾实验装置,运用多普勒相位粒子动态分析仪(PDPA),观测了喷嘴压降对于雾化液滴运动特性的影响,着重分析了液滴轴向速度和径向速度的分布。结果表明:随着测量截面与喷嘴间的距离由25mm增到100mm,液滴平均直径(D30)变大:当喷嘴压降为2.2MPa,D30由44.26 m增大到61.26 m,当喷嘴压降为2.6MPa,D30由42.88 m增大到55.49 m;距离喷嘴越远,液滴轴向速度和径向速度越小;测量点距离中心轴越远,液滴轴向速度越小,径向速度脉动越大;喷嘴压降增大,液滴平均直径减小,液滴轴向速度分布均匀性变好,径向速度分布均匀性变差。 An impinging nozzle was designed to investigate the motion properties of spray particles from impinging nozzle at atmospheric environment.Phase doppler particle analyzer(PDPA)was used to record the effects of the nozzle pressure on the motion properties of spray particles.The distributions of axial velocity and radial velocity for particles were analyzed emphatically.Results indicate that as the distance between the measurement section and the nozzle increases from 25 mm to 100 mm,the mean diameter(D30)of the particles at the pressure drop of 2.2MPa increases from 44.26 m to 61.26 m and from 42.88 m to 55.49 m at the pressure drop of 2.6 MPa.The further away from the nozzle,the smaller the axial velocity and the radial velocity of the particles.The axial velocity of the particles decreases and the radial velocity fluctuation increases with distance between the measuring points and the center axis increasing.The D30 of the particles decreases when the nozzle pressure increases,and the distribution uniformity of the particles is better for the axial velocity but worse for the radial velocity.
出处 《含能材料》 EI CAS CSCD 北大核心 2015年第6期583-588,共6页 Chinese Journal of Energetic Materials
基金 教育部博士点基金资助项目(20113219110024)
关键词 双股自击式喷嘴 雾化 粒子 速度分布 impinging nozzle spray particle velocity distribution
  • 相关文献

参考文献16

  • 1Yetter R A, Yang V, Aksay I A, et al. Meso and micro scale pro- pulsion concepts for small spacecraft[R]. ADA-455414: 2006.
  • 2Casiano M J, Hulka J R, Yang V. Liquid-propellant rocket engine throttling: A comprehensive review [R ]. AIAA-2009 - 5135 : 2009.
  • 3Ibrahim E A, Przekwas A J. Impinging jets atomization[J]. Phys- ics of Fluids A ( Fluid Dynamics), 1991. 3 ( 12 ) : 2981 -2987.
  • 4Ibrahim E A, Outland B E. A non-linear model for impinging jets atomization [ J ]. Journal of Mechanical Engineering Science, 2008,222(2) : 213-224.
  • 5Vassallo P, Ashgriz N, 8oorady F A. Effect of flow rate on the spray characteristics of impinging water jets[J]. Journal of Pro- pulsion and Power, 1992,8 ( 5 ) : 980-986.
  • 6Anderson W E, Ryan H M, Pal S, et al. Fundamental studies of impinging liquid jets[ R]. AIAA-1992-0458 : 1992.
  • 7Ryan H M, Anderson W E, Pal S, et al. Atomization characteris- tics of impinging liquid jets[J]. Journal of Propulsion and Power, 1995,11(1): 135-145.
  • 8Ri L, Ashgriz N. Characteristics of liquid sheets formed by two impingingjets[J]. Physics of Fluids, 2006, 18(8): 1-13.
  • 9Jung K, Khil T, Yoon Y. Effects of orifice internal flow on break- up characteristics of like-doublet injectors [J].Journal of Propul- sion and Power, 2006,22 ( 3 ), 653-660.
  • 10Chen X, Ma D, Yang V, et al. High-fidelity simulations of im- pinging jet atomization [J].Atomization and Sprays, 2013,23 (12): 1079-1101.

二级参考文献20

  • 1黄镇宇,张传名,李习臣,刘建忠,周俊虎,岑可法.6t/h撞击式水煤浆喷嘴雾化特性试验研究[J].中国电机工程学报,2004,24(6):201-204. 被引量:25
  • 2余永刚,周彦煌,李丽,李先.HAN基液体发射药喷雾场颗粒分布特性研究[J].弹道学报,2001,13(2):37-40. 被引量:4
  • 3周猛.气液同轴式喷注器雾化特性和激光散射测粒技术研究[M].长沙:国防科技大学,1991..
  • 4Mullingger P J, Chigier N A. The design and performance of internal mixing multijet twin-fluid atomizers [ J]. J Inst Fuel, 1974,47:251--261.
  • 5Pilch M,Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. Int J Multiphase Flow, 1987,13:741--757.
  • 6Dombrowski N,Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[ J]. Chem Eng Sci, 1963 ,18 : 203--214.
  • 7Senecal P K, Schmidt D P. Modeling high-speed viscous liquid sheet atomization[ J]. Int J Multiphase Flow.1999.25:1073--1097.
  • 8Berthoumieu P, Carentz H. Contribution to droplet breakup analysis[J]. In: J Heat and Flow, 1999,20:492---498.
  • 9Rangel R H,Sirgnano W A. The linear and nonlinear shear instability of a fluid sheet[ J ]. Phys Fluids A, 1999,3 (10) :2392--2400.
  • 10ROSENBERG S D,SCHOENMAN L. New generation of high- performance engines for spacecraft propulsion[J]. Journal of Propulsion and Power, 1994,10 (1) : 40 - 46.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部