期刊文献+

奇异随机偏微分方程中参数MLE的渐近性质

Asymptotic Properties about MLE of the Parameter in Some Singular Stochastic Partial Differential Equation
下载PDF
导出
摘要 对一类带有未知参数和小干扰项的奇异随机偏微分方程,基于连续样本轨道,给出了参数的极大似然估计,证明了当干扰项趋于0时,参数估计量的强相合性和渐近正态性. In this paper, the singular stochastic partial differential equation with an unknown parameter and a small noise is studied. The maximum likelihood estimator of the parameter based on the continuous observation of the Fourier coefficients is proposed. The strong convergence and asymptotic normality of the estimator are established as the noise tends to zero.
作者 张彩伢
出处 《应用概率统计》 CSCD 北大核心 2015年第2期183-192,共10页 Chinese Journal of Applied Probability and Statistics
基金 浙江省自然科学基金(LY14A010003)资助
关键词 随机偏微分方程 极大似然估计 强相合性 渐近正态性 Stochastic partial differential equation, maximum likelihood estimator, strong consistency, asymptotic normality.
  • 相关文献

参考文献15

  • 1Ito, K., Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, CBMS Notes, SIAM, Baton Rouge, 1984.
  • 2Rozovskii, B.L., Stochastic Evolution Systems, Kluwer, Dordrecht, 1990.
  • 3Ghanem, R., Ingredients for a general purpose stochastic finite elements implementation, Computer Methods in Applied Mechanics and Engineering, 168(1-4)(1999), 19-34.
  • 4Balan, R.M., Linear SPDEs driven by stationary random distributions, Journal of Fourier Analysis and Applications, 18(6)(2012), 1113-1145.
  • 5Hubner, M., Khasminskii, R. and Rozovskii, B.L., Two examples of parameter estimation for s- tochastic partial differential equations, Stochastic Processes: A Festschrift in Honour of Gopinath Kallianpur (Editors: Cambanis, S., Ghosh, J.K., Karandikar, R.L. and Sen, P.K.), Springer, New York, 1993, 149-160.
  • 6Huebner, M. and Rozovskii, B.L, On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE's, Probability Theory and Related Fields, 103(2)(1995), 143-163.
  • 7Prakasa Rao, B.L.S., Bayes estimation for some stochastic partial differential equations, Journal of Statistical Planning and Inference, 91(2)(2000), 511-524.
  • 8Prakasa Rao, B.L.S., Estimation for some stochastic partial differential equations based on discrete observations II, Calcutta Statistical Association Bulletin, 54(215-216)(2003), 129-141.
  • 9Zhang, C. and Lin, Z., On asymptotic properties of the parameter estimator for a type of SPDE, Journal of Statistical Planning and Inference, 138(12)(2008), 4033-4040.
  • 10Cialenco, I., Parameter estimations for SPDEs with multiplicative fractional noise, Stochastics and Dynamics, 10(4)(2010), 561-576.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部