期刊文献+

一种非度量属性距离方法

下载PDF
导出
摘要 目前,大多数相似性相关工作都会使用欧式距离计算最近邻来解决问题,如相似性搜索。然而,存在研究表明该类具备度量属性的距离方法是有缺陷的,不能满足所有应用需求。因此,本文从实际出发,提出了一种新的相似性度量方法,实验结果表明,所提方法在实际应用中是有效的。
作者 任建新
出处 《计算机光盘软件与应用》 2015年第3期127-128,共2页 Computer CD Software and Application
  • 相关文献

参考文献4

  • 1Skopal T,Bustos B.On nonmetric similarity search problems in complex domains[J].ACM Computing Surveys(CSUR),2011(04):34.
  • 2Chan F K P,Fu A W C,Yu C.Haar wavelets for efficient similarity search of time-series:with and without time warping[J].Knowledge and Data Engineering,IEEE Transactions on,2003(03):686-705.
  • 3Bernecker T,Emrich T,Graf F,et al.Subspace similarity search using the ideas of ranking and top-k retrieval[C]//Data Engineering Workshops(ICDEW),2010 IEEE 26th International Conference on.IEEE,2010:4-9.
  • 4毕志升,王甲海,印鉴.基于差分演化算法的软子空间聚类[J].计算机学报,2012,35(10):2116-2128. 被引量:18

二级参考文献24

  • 1Kriegel H-P, Kroger P, Zimek A. Clustering high dimen sional data: A survey on subspace clustering, pattern based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 2009, 3(1): 1-58.
  • 2Moise G, Zimek A, Kroger P, Kriegel H-P, Sander J. Sub- space and projected clustering: Experimental evaluation and analysis. Knowledge and Information Systems, 2009, 21(3) : 299-326.
  • 3Huang J Z, Ng M K, Rong H, Li Z. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (5):657-668.
  • 4Jing L, Ng M K, Huang J Z. An entropy weighting k means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineer- ing, 2007, 19(8): 1026-1041.
  • 5Deng Z, Choi K-S, Chung F-L, Wang S. Enhanced soft sub- space clustering integrating within-cluster and between clus- ter information. Pattern Recognition, 2010, 43(3): 767-781.
  • 6Boongoen T, Shang C, Iam-On N, Shen Q. Extending data reliability measure to a filter approach for soft subspace clustering. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2011, 41(6): 1705-1714.
  • 7Gan G, Wu J, Yang Z. A fuzzy subspace algorithm for clus- tering high dimensional data//Li Xue, Osmar Zaiane, Li Z-H eds. Advanced Data Mining and Applications, Series Lecture Notes in Computer Science. Germany: Springer Berlin/Heidelberg, 2006, 4093 : 271-278.
  • 8Friedman J H, Meuiman J J. Clustering objects on subsets of attributes. Journal of the Royal Statistieal Society, 2004, 66:815-849.
  • 9Jing L, Ng M, Xu J, Huang J. Subspace clustering of text documents with feature weighting k means algorithm// Ho T, Cheung D, Liu H. Advances in Knowledge Discovery and Data Mining, Series. Lecture Notes in Computer Science. Germany: Springer Berlin/Heidelberg, 2005, 3518:802-812.
  • 10MacQueen J B. Some methods for classification and analysis of multivariate observations//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA, 1967:281-297.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部