摘要
将灰自助原理融入泊松过程,提出灰自助泊松方法,以预测滚动轴承振动性能可靠性的变异过程。凭借时间序列的计数过程,在短时间区间内获取轴承振动表现出的变异强度的极少量原始信息;经过对变异强度原始信息的自助再抽样,模拟出变异强度的大量生成信息;用灰预测模型处理生成信息,获取变异强度估计值;用泊松过程表征可靠性函数,实时预测轴承振动性能可靠性的变异过程。轴承振动时间序列可靠性的试验研究表明,性能可靠性变异状态可以被真实描述,预测值与检验值具有很好的一致性。
Fusing the grey bootstrap principle into Poisson process, the grey bootstrap Poisson method is proposed to forecast the variation process of reliability of the rolling bearing vibration performance. A small number of raw variation-intensity information presented by bearing vibration is extracted with the help of the counting process of time series in short time interval, a large number of generated variation-intensity information is simulated by means of bootstrap resampling from raw variation-intensity information, the estimated value of variation intensity is obtalned by using the grey prediction model to process generated variation-intensity information, and the variation process of reliability of the bearing vibration performance is forecasted in time via the reliability function expressed as Poisson process. Experimental investigation on reliability of bearing vibration as a time series shows that variable states of performance reliability can be described truly and predicted values are in very good accordance with test values.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2015年第9期97-103,共7页
Journal of Mechanical Engineering
基金
国家自然科学基金(51475144
51075123)
河南省高校科技创新团队支持计划(131RTSTHN025)资助项目
关键词
可靠性
滚动轴承
振动
时间序列
变异过程
灰自助泊松方法
reliability
rolling bearing
vibration
time series
variation process
grey bootstrap Poisson method