期刊文献+

弯曲应变下单根GaAs纳米线的电学性能的原位透射电子显微镜研究 被引量:5

In situ study on transport property of bending GaAs nanowires in transmission electron microscope
下载PDF
导出
摘要 在透射电子显微镜下,对单根GaAs纳米线实施了原位弯曲变形并获得了其弯曲变形下的电输运性能特性。本研究中,利用扫描透射探针系统和电子束诱导碳沉积技术,选取了单根GaAs纳米线并将纳米线两端与两根钨针尖连接固定。控制可移动的钨针尖,使GaAs纳米线发生弯曲变形同时获得相应的电流-电压曲线。有限元分析表明当纳米线的两端都固定时,纳米线同时承受了压缩应变和拉伸应变,其中压缩应变分布更为广泛。随着变形增加,GaAs纳米线的电导率增加了55%,这可能归因于弯曲变形下压缩与拉伸应变对GaAs纳米线能带结构的共同作用。 In a transmission electron microscope, in-situ deformation process and measurement of electrical transport properties were performed on individual GaAs nanowires. The single GaAs nanowire was selected and bonded between two tungsten pinpoints with assistance of piezo system and electron-beam induced deposition technique. By controlling the movable tungsten pinpoint, bending process of the bonded nanowire and the corresponding current-voltage curves were obtained simultaneously. Strain distributions analyzed using finite element analysis method indicate that the GaAa nanowire was mostly under compressive strain when it’ s both ends were restrained. The conductivity was only enhanced about 55% with increasing deformation which may be attributed to co-existence of tension and compression in the bended GaAs nanowires.
出处 《电子显微学报》 CAS CSCD 2015年第2期89-93,共5页 Journal of Chinese Electron Microscopy Society
基金 国家自然科学基金资助项目(No.11374029) 国家自然科学基金重点项目(No.11234011) 全国优秀博士学位论文作者专项资金资助项目(No.201214) 北京市科技新星项目(No.Z121103002512017) 北京市教委项目(No.KM201310005009)
关键词 砷化镓纳米线 压阻效应 应变 电导率 GaAs nanowires piezoresistance strain conductivity
  • 相关文献

参考文献1

二级参考文献43

  • 1宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304.
  • 2Zhao J, Zhang G Y, Shi D X.2013 Chin. Phys. B 22 057701.
  • 3Liu Z Y, Zhang J C, Duan H T, Xue J S, Lin Z Y, Ma J C, Xue X Y, Hao Y.2011 Chin. Phys. B.20 097701.
  • 4Rima K, Andersonb R, Boydb D, Cardonea F, Chana K, Chenb H, Christansena S, Chua J, Jenkinsa K, Kanarskyb T, Koestera S, Leeb B H, Leea K, Mazzeob V, Mocutab A, Mocutab D, Mooneya P M, Oldigesb P, Otta J, Ronsheimb P, Roya R, Steegenb A, Yanga M, Zhub H, Ieongb M, Wonga H S P.2003 Solid-State Electronics 47 1133.
  • 5Wang D, Ninomiya Masaharu, Nakamae Masahiko, Nakashima Hiroshi.2005 Appl. Phys. Lett. 86 122111.
  • 6Nayak D K, Woo J C S, Park J S, Wang K L, MacWilliams, K P 1993 Appl. Phys. Lett. 62 2853.
  • 7Stan G, Krylyuk S, Davydov A V, Levin I, Cook R F.2012.Nano Lett. 12 2599.
  • 8Smith D A, Holmberg V C, Korgel B A.2010 ACS Nano 4 2356.
  • 9Wei B, Zheng K, Ji Y, Zhang Y F, Zhang Z, Han X D.2012.Nano Lett. 12 4595.
  • 10Pang C Y, Lee G Y, Kim T, Kim S M, Kim H N, Ahn S H, Suh K Y.2012.Nat. Mater. 11 795.

共引文献1

同被引文献16

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部