期刊文献+

FePt/FeRh双层薄膜的结构和磁性 被引量:2

Structures and magnetic properties of FePt/FeRh bilayer films
原文传递
导出
摘要 用磁控溅射法,在加热到400℃的Mg O(001)基片上,得到25 nm厚的A1相Fe Pt软磁薄膜,经过热处理使之发生不同程度的A1→L10相转变,在450℃继续生长50 nm厚的Fe Rh,并在相同温度连续保温24 h,使Fe Rh层转变为有序的B2相,得到具有热致反铁磁-铁磁转变性质的Fe Pt/Fe Rh双层复合磁性薄膜.结果表明,Fe Pt层和Fe Rh层都有(001)取向;在生长Fe Rh层之前,如果Fe Pt层没有或者未完全转变为硬磁的L10相,可以使Fe Rh层的反铁磁-铁磁转变温度由100℃提高到200℃;沿垂直于膜面的方向施加磁场,双层薄膜的室温磁化曲线呈方形,矫顽力可达到7.4 k Oe;升温使Fe Rh层转变为软铁磁性,反磁化过程的磁化强度在2个特征磁场附近发生跳跃,显示双层膜中形成了磁性弹簧,矫顽力可下降一半以上.Fe Rh反铁磁-铁磁转变温度升高的原因在于有适量的Pt从Fe Pt层析出并扩散进入Fe Rh层,用于制作热辅助复合垂直磁存储介质,有助于提高稳定性. Soft A1-FePt (25 nm) films were magnetron-sputtered onto MgO (001) substrates at 400℃ and annealed at different temperatures to adjust the degree of A1→L10 transformation. The FePt was then covered with FeRh (50 nm) film at 450℃ and subsequently annealed at the same temperature for 24 h to transform the FeRh layer into the ordered B2 phase. In this way, near-equiatomic FeRh/FePt bilayer films showing thermal antiferromagnetic-ferromagnetic transition behavior were obtained. The results indicate that both layers can grow epitaxially with an (001) texture. The antiferromagnetic-ferromagnetic transition temperature of FeRh increased from 100℃ to 200℃ by depositing the FeRh layer on a disordered or partially ordered FePt layer. When a magnetic field was applied perpendicularly to the plane, the magnetization curves of FeRh/FePt measured at room temperature were rectangular, and the coercive force could reach up to 7.4 kOe. After transiting the FeRh layer from antiferromagnetic to soft magnetic by heating, the magnetization jumped at two critical fields during the magnetization reversal process, indicating the existence of magnetic springs, and the coercive force could decrease to about half of that at room temperature. It is proposed that the shift of the antiferromagnetic-ferromagnetic transition temperature resulted from the precipitation of Pt from FePt during the A1→L10 transformation and the migration into FeRh during the disordered B2→ordered B2 transformation. This information will be useful for improving the stability of thermally assisted magnetic storage media.
出处 《科学通报》 EI CAS CSCD 北大核心 2015年第13期1180-1190,共11页 Chinese Science Bulletin
基金 国家自然科学基金(51071132)资助
关键词 FeRh/FePt双层薄膜 反铁磁-铁磁转变 热处理 矫顽力 FeRh/FePt bilayer film, antiferromagnetie-ferromagnetic transition, annealing, coercive force
  • 相关文献

参考文献3

二级参考文献157

  • 1Skomski R. Nanomagnetics. J Phys: Condens Matter, 2003, 15:R841-R896.
  • 2Weller D, Moser A, Folks L, et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans Magn, 2000, 36:10-15.
  • 3Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater, 2006, 18:393-403.
  • 4Ristau R A, Barmak K, Lewis L H, et al. On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films. J Appl Phys, 1999, 86:4527-4533.
  • 5Takahashi Y, Matsubara E, Kawazoe Y, et al. Reconstruction of atomic images from multiple-energy X-ray holograms of FePt films by the scattering pattern matrix method. Appl Phys Lett, 2005, 87:234104.
  • 6Shima T, Takanashi K, Takahashi Y K, et al. High coercivity and magnetic domain observation in epitaxially grown particulate FePt thin films. J Magn Magn Mater, 2003, 266:171-177.
  • 7Zhang Y, Wan J, Skumryev V, et al. Microstructural characterization of L10 FePt/MgO nanoparticles with perpendicular anisotropy. Appl Phys Lett, 2004, 85:5343-5345.
  • 8Ross C A. Patterned magnetic recording media. Annu Rev Mater Res, 2001, 31:203-235.
  • 9Lomakin V, Choi R, Livshitz B, et al. Dual-layer patterned media "ledge" design for ultrahigh density magnetic recording. Appl Phys Lett, 2008, 92:022502.
  • 10Albrecht M, Ganesan S, Rettner C T, et al. Patterned perpendicular and longitudinal media: A magnetic recording study. IEEE Trans Magn, 2003, 39:2323-2325.

共引文献2

同被引文献52

  • 1王芳,许小红.振动样品磁强计在磁记录介质中的应用[J].信息记录材料,2004,5(4):46-50. 被引量:2
  • 2陈林,李敬东,唐跃进,任丽.超导量子干涉仪发展和应用现状[J].低温物理学报,2005,27(A01):657-661. 被引量:13
  • 3Charap S H, Lu Puling, He Yaniun. Thermal stability of recorded information at high densities[J]. IEEE Transact Magnet, 1997,33 (1):978.
  • 4Granberg P, Schreiber R, Pang Y, et al. Layered magnetic struc- tures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers[J]. Phys Rev Lett,1986,57(19):2442.
  • 5Thiele J U, Coffey K R, Toney M F, et al. Temperature dependent magnetic properties of highly chemically ordered Fe55-x NixPt45 L10 films[J].J Appl Phys, 2002,91(10) : 6595.
  • 6Zsoldos L. Lattice parameter change of FeRh alloys due to antiferro- magnetic ferromagnetic transformation[J]. Physica Status Solidi B, 1967,20(1) :K25.
  • 7Ibarra M R, Algarabel P A. Giant volume magnetostriction in the FeRh alloy[J]. Plays Rev B, 1994,50(6) : 4196.
  • 8Kouvel J S, Hartelius C C. Anomalous magnetic moments and transformations in the ordered alloy FeRh[J]. J Appl Phys, 1962,33 (3):1343.
  • 9Guslienko K Y, Hoffmann A. Vortex magnetization reversal in double-layer ferromagnetic antiferromagnetic dots[J]. J Appl Phys, 2007,101(9) :093901.
  • 10Kneller E F, Hawig R. The exchange-spring magnet: A new mate- rial principle for permanent magnets[J]. IEEE Transact Magnet, 1991,27(4) : 3588.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部