期刊文献+

代谢工程改造微生物高产氨基酸的策略 被引量:2

Strategy of Metabolic Engineering Microorganism for High Yield Amino Acids
原文传递
导出
摘要 氨基酸作为一类营养物质在维持机体正常的生理生化反应方面具有重要的功能,常用作食品、药品和化妆品等的添加剂。氨基酸的生产主要依靠微生物发酵,产氨基酸菌的选育却是制约大规模工业生产氨基酸的重要因素。随着微生物分子育种技术的发展和运用,利用代谢工程改造细胞本身固有的代谢网络,指导氨基酸高产菌的选育已成为当前研究的热点。以谷氨酸棒杆菌(Corynebacterium glutamicum)为例,就该菌株代谢网络的特征以及高产氨基酸的代谢工程策略和应用进行综述。 Amino acids, which play the irreplaceable role in maintaining the body's normal physiology as a kind of nutrient substances, are usually used as additives in food, pharmaceuticals, and cosmetics. Production of amino acids mainly relies on microbial fermentation. However, high yield amino acid strain by selection hinders the large-scale industrial production. Application of metabolic engineering has become a hot spot of research in microbial metabolism network and genetically modification for screening high yield amino acid strain with the development of metabolic engineering strategy and technology in molecular breeding. The characteristic of C. glutamicum metabolism network and metabolic engineering strategy in molecular breeding of C. glutamicum-producing amino acids are introduced.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2015年第3期99-103,共5页 China Biotechnology
基金 国家自然科学基金资助项目(31360219 30960012)
关键词 代谢工程 谷氨酸棒杆菌 分子育种 氨基酸 Metabolic engineering C. glutamicum Molecular breeding Amino acid
  • 相关文献

参考文献32

  • 1Leuchtenberger W, Huthmacher K, Drauz K, et al. Biotechnological production of amino acids and derivatives : current status and prospects. Appl Microbiol Biotechnol, 2005,69 (1): 1-8.
  • 2陈琦,王卓,魏冬青.代谢网络流分析进展及应用[J].科学通报,2010,55(14):1302-1309. 被引量:11
  • 3Xu J, Han M, Zhang J, et al. Metabolic engineering Coryaebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids, 2014, 46: 2165-2175.
  • 4Schneider J, Karin N, Volker F W. Production of the amino acidsL-glutamate, L-lysine, L-omithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology, 2011,154: 191-198.
  • 5Xu M, Rao Z, Dou W. Site-directed mutagenesis studies on the L-Arginine-binding sites of feedback inhibition in N-acetyl-L- glutamate kinase ( NAGK ) from Corynebacterium glutamicum. Curr Microbiol, 2012,64 : 164-172.
  • 6Seo Y K, Lee J, Lee S Y. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnology and Bioengineering,2015,112(2) :416-421.
  • 7Bommareddy A R, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the eoenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering, 2014,25 : 30-37.
  • 8Jiang L Y, Zhang Y Y, Li Z, et al. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L- ornithine by increasing NADPH ava/lability. Journal of Industrial Microbiology and Biotechnology, 2013,10(40) : 1143-1151.
  • 9Park S H, Kim H U, Kim T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications ,2014, doi : 10. 1038/ncomms5618.
  • 10Yin L, Shi F, Hu X, et al. Increasing L-isoleucine production in Corynebacterium glutamicum by overexpresslng global regulator Lrp and two-component export system BrnFE. Journal of Applied Microbiology, 2012,5 (114) : 1369-1377.

二级参考文献99

  • 1LUO Ruoyu,LIAO Sha,ZENG Shaoqun,LI Yixue,LUO Qingming.FluxExplorer: A general platform for modeling and analyses of metabolic net-works based on stoichiometry[J].Chinese Science Bulletin,2006,51(6):689-696. 被引量:6
  • 2Leitner F, Valencia A. A text-mining perspective on the requirements for electronically annotated abstracts. FEBS Lett, 2008, 582: 1178-1181.
  • 3Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc, 2010, 5: 93-121.
  • 4Otero JM, Nielsen J. Industrial systems biology. Biotechnol Bioeng, 2009, 105: 439-460.
  • 5Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coil Nat Biotechnol, 2008, 26: 659-667,.
  • 6Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid production. Curt Opin Biotechnol, 2008, 19: 454-460.
  • 7Patil KR, Akesson M, Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol, 2004, 15: 64-69.
  • 8Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol, 2008, 26: 659-667.
  • 9Durot M, Bourguignon PY, Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMSMicrobiolRev, 2009, 33: 164-190.
  • 10Hanisch D, Zien A, Zimmer R, et al. Co-clustering of biological networks and gene expression data. Bioinformatics, 2002, 18(suppl 1 ): S 145-S 154.

共引文献23

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部