期刊文献+

基于免疫算法的非监督克隆选择聚类算法研究

Unsupervised Clonal Selection Clustering Algorithm Based on Immune Algorithm
下载PDF
导出
摘要 在详细分析克隆选择算法的基础上,提出非监督克隆选择聚类算法。该算法是数据驱动的自适应调整其参数,它对数据进行分类的操作尽可能快,改善过早收敛的问题,提高数据聚类的速度。通过使用一些人工和现实生活中的数据集,比较非监督克隆选择聚类算法与著名的K-means算法之间的性能优劣。实验结果表明,该算法不仅解决K-means算法需事先确定的类数K和在次佳值卡住的缺点,而且在功能上比传统的K-means分类算法具有较高的分类精度和更高的可靠性。 Based on the detailed analysis of clonal selection algorithm, proposes unsupervised clone selection clustering algorithm. Which is adaptive data driven by adjusting its parameters, it carries on the classification of data operations as soon as possible, improves the premature con- vergence problem, improves the speed of data clustering. By using several artificial and real-life data sets, comparing the performance between unsupervised clonal selection clustering algorithm K-means algorithm. The experimental results show that, this algorithm solves the K-means algorithm needs several classes of K determined in advance, and the second best value stuck faults, the classification accu- racy, and it is much better than traditional K-means classification algorithm in function and with higher reliability.
作者 韦灵
出处 《现代计算机(中旬刊)》 2015年第4期21-25,共5页 Modern Computer
基金 广西科技大学鹿山学院科学基金项目(No.2013LSZK05)
关键词 人工免疫系统 克隆选择算法 聚类 多目标优化 K-MEANS算法 Artificial Immune Systems Clonal Selection Algorithms Clustering Multi-Objective Optimization K-means Algorithm
  • 相关文献

参考文献8

二级参考文献51

  • 1龚涛,蔡自兴.自然计算的广义映射模型[J].计算机科学,2002,29(z1):27-29. 被引量:4
  • 2周双喜,杨彬.实现无功优化的新算法──遗传算法[J].电力系统自动化,1995,19(11):19-23. 被引量:54
  • 3LEE K Y.Optimal reactive power planning using evolutionary programming,evolutionary strategy,genetic algorithm and linear programming[J】.IEEE Trans.Power syst.,1998,PWRS-13,(1):101—108.
  • 4Urdaneta A J, Gomez J F, Sorrentino E, et al. A hybrid genetic algorithm for optimal reactive power planning based upon successivelinear programming[J]. IEEE Transactions on Power Systems, 1999,14(4): 1292-1298.
  • 5Delfanti M, Granelli GP, Marannino P, et al. Optimal capacitor placement using deterministic and genetic algorithms[J]. IEEE Transactions on Power Systems, 2000,15(3): 1041-1046.
  • 6Mantovani J R S, Modesto S A G, Garcia A V. VAr planning usinggenetic algorithm and linear programming[J]. IEE Proceedings-Generation, Transmission and Distribution, 2001,148(3): 257 -262.
  • 7Kenji Iba. Reactive power optimization by genetic algorithm. IEEE Tran. on P. S. 1994,9(2) : 685-692.
  • 8Gan D Q,Electrical Power Systems Research,1996年,39卷,3期,195页
  • 9Huang Y C,IEEE Trans Power Systems,1996年,11卷,4期,1868页
  • 10Jerne N K. Towards a network theory of the immune system[J]. Ann Immunol,1974,125C:373-389.

共引文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部