期刊文献+

基于张量递归神经网络的英文语义关系分类方法研究 被引量:2

Research on the Classification of English Semantic Relationships Based on Tensor Recursive Neural Network
下载PDF
导出
摘要 语义关系分类作为当前语义技术的一个基础领域,获得广泛的关注。提出基于张量空间的递归神经网络算法,利用张量(向量-矩阵对)表示单词,获得更准确的语义分类结果。通过无监督的结构化方式训练模型,大大简便分类过程,舍弃了人工手动标注。实验表明,该算法可以有效识别语义关系,比传统算法性能提高5%以上。 Classification of semantic relationships is a basic area of semantic technology and gains wide attention. Introduces a better approach to classify semantic relationships of words, tensor recursive neural network model which uses tensor (vector-matrix pairs)to represent a sin- gle words. The model trains the data by an unsupervised and structural way, which has no more need of hand-labeled corpus and simplify the process of classification. The experiment shows that the algorithm can classify semantic relationships effectively, and the outperform improves by 5 percent.
作者 周佳逸
出处 《现代计算机(中旬刊)》 2015年第4期43-47,共5页 Modern Computer
关键词 张量 神经网络 语义关系分类 Tensor , Neural Network Classification of Semantic Relationships
  • 相关文献

参考文献11

  • 1Hearst, Marti A. Automatic Acquisition of Hyponyms from Large Text Corpora[C]. Proceedings of the 14th International Conference on Computational Linguistics. New York: ACM. 1992:539-545.
  • 2Sergey Brin, Rajeev Motwani, Lawrence Page, Terry Winograd. What Can You Do with a Web in Your Pocket[J]. IEEE Data Engi- neering Bulletin, 2008 (21 ) :37-47.
  • 3John Rupert Firth. A Synopsis of Linguistic Theory[J]. Philological Society: Studies in Linguistic Analysis. 1957(4):1930-1955.
  • 4Oren Etzioni, Michael Cafarella, Doug Downey,etc. Unsupervised Named-Entity Extraction from the Web: An Experimental Study[J]. Artificial Intelligence, 2005,6 (165) :91 - 134.
  • 5Philippe Muller, Nabil Hathout, Bruno Gaume. Synonym Extraction Using a Semantic Distance on a Dictionary[C]. Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, 2006:65-72.
  • 6Einat Minkov, William Cohen. Graph Based Similarity Measures for Synonym Extraction from Parsed Text[C]. Proceedings of the 7th Workshop on Graph Based Methods for Natural Language Processing,2012:20-24.
  • 7Richard Socher,Alex Perelygin,Jean Y. Wu,Jason Chuang,Christopher D. Manning. GloVe: Global Vectors for Word Representation, 2014[J].
  • 8Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning[C]. In ICML, 2008.
  • 9Mitchell and M. Lapata. 2010. Composition in Distributional Models of Semantics [J]. Cognitive Science, 38 (8):1388-1429.
  • 10Baroni, Robert Zamparelli. Nouns are vectors, adjectives are matrices: Representing adjective-noun Construction in Semantic Space [C]. In EMNLP. 2010:1183-1193.

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部